DOI QR코드

DOI QR Code

Deflection ductility of RC beams under mid-span load

  • Received : 2021.09.05
  • Accepted : 2021.10.18
  • Published : 2021.12.10

Abstract

Ductility is very important parameter in seismic design of RC members such as beams where it allows RC beams to dissipate the seismic energy. In this field, the curvature ductility has taken a large part of interest compared to the deflection ductility. For this reason, the present paper aims to propose a general formula for predicting the deflection ductility factor of RC beams under mid-span load. Firstly, the moment area theorem is used to develop a model in order to calculate the yield and the ultimate deflections; then this model is validated by using some results extracted from previous researches. Secondly, a general formula of deflection ductility factor is written based on the developed deflection expressions. The new formula is depended on curvature ductility factor, beam length, and plastic hinge length. To facilitate the use of this formula, a parametric study on the curvature ductility factor is conducted in order to write it in simple manner without the need for curvature calculations. Therefore, the deflection ductility factor can be directly calculated based on beam length, plastic hinge length, concrete strength, reinforcement ratios, and yield strength of steel reinforcement. Finally, the new formula of deflection ductility factor is compared with the model previously developed based on the moment area theorem. The results show the good performance of the new formula.

Keywords

Acknowledgement

The authors are grateful to Dr. Cengiz Dundar, Professor at Cukurova University, Turkey for providing some support in order to realize this research. This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

References

  1. Abderezak, R., Daouadji, T.H. an Rabia, B. (2021a), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.
  2. Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupl. Syst. Mech., 9(5), 473-498. http://doi.org/10.12989/csm.2020.9.5.473.
  3. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023.
  4. ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  5. ACI 435R (2020), Report on Deflection of Nonprestressed Concrete Structures, ACI435R-20, American Concrete Institute, Farmington Hills, MI, USA.
  6. Al-Shaikh, A.H. and Al-Zaid, R.Z. (1993), "Effect of reinforcement ratio on the effective moment of inertia of reinforced concrete beams", ACI Struct. J., 90(2), 144-149. https://doi.org/10.5614/itbj.eng.sci.2011.43.3.4.
  7. Al-Zaid, R.Z., Al-Shaikh, A.H. and Abu-Hussein, M.M. (1991), "Effect of loading type on the effective moment of inertia of reinforced concrete beams", ACI Struct. J., 88(2), 184-190.
  8. Arslan, G. and Ercan, C. (2010), "Curvature ductility prediction of reinforced high strength concrete beam sections", J. Civil Eng. Manage, 16(4), 462-470. https://doi.org/10.3846/jcem.2010.52.
  9. Au, F.T.K. and Bai, Z.Z. (2007), "Two-dimensional nonlinear finite element analysis of monotonically and non-reversed cyclically loaded RC beams", Eng. Struct., 29(11), 2921-2934. https://doi.org/10.1016/j.engstruct.2006.12.009.
  10. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021a), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.
  11. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  12. Benferhat, R., Hassaine Daouadji, T. and Abderezak, R. (2020), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupl. Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
  13. Benferhat, R., Hassaine Daouadji, T. and Rabahi, A. (2021c), "Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate", Adv. Mater. Res., 10(2), 77-98. http://doi.org/10.12989/amr.2021.10.2.077.
  14. Bengar, H.A., Kiadehi, M.A., Shayanfar, J. and Nazari, M. (2020), "Effective flexural rigidities for RC beams and columns with steel fiber", Steel Compos. Struct., 34(3), 453-465. http://doi.org/10.12989/scs.2020.34.3.453.
  15. Bensattalah, T., Daouadji, T.H. and Zidour, M. (2019), "Influences the shape of the floor on the behavior of buildings under seismic effect", International Symposium on Materials and Sustainable Development, Springer, Cham, November.
  16. Bouzid, H. and Kassoul, A. (2016), "Curvature ductility of high strength concrete beams according to Eurocode 2", Struct. Eng. Mech., 58(1), 1-19. http://doi.org/10.12989/sem.2016.58.1.001.
  17. Bouzid, H. and Kassoul, A. (2018), "Curvature ductility prediction of high strength concrete beams", Struct. Eng. Mech., 66(2), 195-201. http://doi.org/10.12989/sem.2018.66.2.195.
  18. Burns, N.H. and Siess, C.P. (1962), "Load-deformation characteristics of beam-column connections in reinforced concrete", A Report on a Research Project SRS No. 234, University of Illinois, Urbana, USA.
  19. Chaded, A., Hassaine Daouadji, T., Rabahi, A., Adim, B., Benferhat, R. and Fazilay, A. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317.
  20. Chergui, S., Daouadji, T.H., Hamrat, M., Boulekbache, B., Bougara, A., Abbes, B. and Amziane, S. (2019), "Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study", Adv. Mater. Res., 8(3), 197-217. https://doi.org/10.12989/amr.2019.8.3.197.
  21. CSA A23.3 (2004), Design of Concrete Structures for Building, Canadian Standards Association, Ontario Canada.
  22. CSA S806 (2002), Design and Construction of Building Components with Fiber-Reinforced Polymers, Canadian Standards Association, Canada.
  23. Dundar, C., Tanrikulu, A.K. and Frosch, R.J. (2015), "Prediction of load-deflection behavior of multi-span FRP and steel reinforced concrete beams", Compos. Struct., 132, 680-693. https://doi.org/10.1016/j.compstruct.2015.06.018.
  24. Erochko, J. (2020), An introduction to Structural Analysis, 1st Edition, Carleton University, Ottawa, Canada.
  25. Esfandiyari, R., Nejad, S.M., Marnani, J.A., Mousavi, S.A. and Zahrai, S.M. (2020), "Seismic behavior of structural and nonstructural elements in RC building with bypass viscous dampers", Steel Compos. Struct., 34(4), 487-497. http://doi.org/10.12989/scs.2020.34.4.487.
  26. Eurocode 2 EN 1992-1-1 (2004), Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, Brussels.
  27. Eurocode 8 EN 1998-1 (2003), Design of Structures for Earthquake Resistance Part 1: General Rules, Seismic Actions and Rules for Buildings, Brussels.
  28. Eurocode 8 EN 1998-1 (2003), Design of Structures for Earthquake Resistance Part 1: General Rules, Seismic Actions and Rules for Buildings, Brussels.
  29. Gioncu, V. and Mazzolani, F.M. (2002), Ductility of Seismic Resistant Steel Structures, Spon Press, London, Great Britain.
  30. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coupl. Syst. Mech., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061.
  31. Hamrat, M., Bouziadi, F., Boulekbache, B., Daouadji, T.H., Chergui, S., Labed, A. and Amziane, S. (2020), "Experimental and numerical investigation on the deflection behavior of pre-cracked and repaired reinforced concrete beams with fiber-reinforced polymer", Constr. Build. Mater., 249, 118745. http://doi.org/10.1016/j.conbuildmat.2020.118745.
  32. Hasgul, U., Turker, K., Birol, T. and Yavas, A. (2018), "Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios", Struct. Concrete, 19(6), 1577-1590. https://doi.org/10.1002/suco.201700089.
  33. Hassaine Daouadji, T. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4.
  34. Hassaine Daouadji, T. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  35. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Mainten., 7(3), 233-259. http://doi.org/10.12989/smm.2020.7.3.233.
  36. Hassaine Daouadji, T., Rabahi, A., Abbes, B. and Adim, B. (2016), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhes. Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703.
  37. Hassaine Daouadji, T., Rabahi, A., Benferhat, R. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses," Coupl. Syst. Mech., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161.
  38. Hassaine Daouadji, T., Rabahi, A., Benferhat, R. and Tounsi, A. (2021c), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573.
  39. Hawileh, R.A. and Naser, M.Z. (2012), "Thermal-stress analysis of RC beams reinforced with GFRP bars", Compos. Part B: Eng., 43(5), 2135-2142. https://doi.org/10.1016/j.compositesb.2012.03.004.
  40. Hawileh, R.A., Nawaz, W. and Abdalla, J.A. (2018), "Flexural behavior of reinforced concrete beams externally strengthened with Hardwire Steel-Fiber sheets", Constr. Build Mater, 172, 562-573. https://doi.org/10.1016/j.conbuildmat.2018.03.225.
  41. Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751.
  42. Hsu, T.T.C. (1980), "Ductility of reinforced concrete members and shearwalls", J. Chin. Inst. Eng., 3(1), 1-20. https://doi.org/10.1080/02533839.1980.9676643
  43. ISIS M03 (2007), Reinforcing Concrete Structures with Fiber Reinforced Polymers (FRPs), ISIS Canada Corporation, Canada Design Manual, the Canadian Network of Centers of Excellence on Intelligent Sensing for Innovative Structures, Winnipeg, Manitoba, Canada.
  44. Kablia, A., Benferhat, R., Hassaine Daouadji, T. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupl. Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.
  45. Kara, I.F. and Dundar, C. (2009), "Effect of loading types and reinforcement ratio on an effective moment of inertia and deflection of a reinforced concrete beam", Adv. Eng. Soft., 40(9), 836-846. https://doi.org/10.1016/j.advengsoft.2009.01.009.
  46. Kassoul, A. and Bougara, A. (2010), "Maximum ratio of longitudinal tensile reinforcement in high strength doubly reinforced concrete beams designed according to Eurocode 8", Eng. Struct., 32(10), 3206-3213. https://doi.org/10.1016/j.engstruct.2010.06.009.
  47. Kwak, H.G. and Kim, S.P. (2002), "Nonlinear analysis of RC beams based on moment-curvature relation", Comput. Struct., 80(7-8), 615-628. https://doi.org/10.1016/S0045-7949(02)00030-5.
  48. Kwan, A.K.H., Ho, J.C.M. and Pam, H.J. (2002), "Flexural strength and ductility of reinforced concrete beams", Proc. Inst. Civil Eng.-Struct. Build., 152(4), 361-369. https://doi.org/10.1680/stbu.2002.152.4.361.
  49. Lee, H.J. (2013), "Predictions of curvature ductility factor of reinforced concrete beam sections used high strength concrete and steel", J. Korean Soc. Civil Eng., 33(2), 483-493. https://doi.org/10.12652/Ksce.2013.33.2.483.
  50. Ma, D.Y., Han, L.H., Zhao, X.L. and Yang, W.B. (2020), "Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study", Steel Compos. Struct., 36(5), 533-551. http://doi.org/10.12989/scs.2020.36.5.533.
  51. Mahmoud, H.S., Hawileh, R.A. and Abdalla, J.A. (2021), "Strengthening of high strength reinforced concrete thin slabs with CFRP laminates", Compos. Struct., 275, 114412. https://doi.org/10.1016/j.compstruct.2021.114412.
  52. Mahroug, M.E.M., Ashour, A.F. and Lam, D. (2014a), "Experimental response and code modeling continuous concrete slabs reinforced with BFRP bars", Compos. Struct., 107, 664-674. https://doi.org/10.1016/j.compstruct.2013.08.029.
  53. Mahroug, M.E.M., Ashour, A.F. and Lam, D. (2014b), "Tests of continuous concrete slabs reinforced with carbon fiber reinforced polymer bars", Compos. Part B: Eng., 66, 348-357. https://doi.org/10.1016/j.compositesb.2014.06.003.
  54. Pam, H.J., Kwan, A.K.H. and Ho, J.C.M. (2001b), "Post-peak behavior and flexural ductility of doubly reinforced high-strength concrete beams", Struct. Eng. Mech., 12(5), 459-474. http://doi.org/10.12989/sem.2001.12.5.459.
  55. Pam, H.J., Kwan, A.K.H. and Islam, M.S. (2001a), "Flexural strength and ductility of reinforced normal-and high-strength concrete beams", Proc. Inst. Civil Eng.-Struct. Build., 146(4), 381-389. https://doi.org/10.1680/stbu.2001.146.4.381.
  56. Panagiotakos, T.B. and Fardis, M.N. (2001), "Deformations of reinforced concrete members at yielding and ultimate", ACI Struct. J., 98(2), 135-148.
  57. Park, R. (1988), "Ductility evaluation from laboratory and analytical testing", Proceeding of Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, August.
  58. Park, R. and Ruitong, D. (1988), "Ductility of doubly reinforced beam sections", ACI Struct. J., 85(2), 217-225.
  59. Paulay, T.P. and Priestley, M.J.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, Inc, New York, USA.
  60. Rabahi, A., Benferhat, R. and Hassaine Daouadji, T. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083.
  61. Rabahi, A., Hassaine Daouadji, T., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinf. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633.
  62. Rabahi, A., Hassaine Daouadji, T., Benferhat, R. and Adim, B. (2018), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Adv. Mater. Res., 6(3), 257-278. https://doi.org/10.12989/amr.2017.6.3.257.
  63. Rabahi, A., Hassaine Daouadji, T., Benferhat, R. and Tounsi, A. (2021c), "Mechanical behavior of RC cantilever beams strengthened with FRP laminate plate", Adv. Comput. Des., 6(3), 169-190. http://doi.org/10.12989/acd.2021.6.3.169.
  64. Rabahi, A., Hassaine Daouadji, T., Benferhat, R. and Tounsi, A. (2021d), "New proposal for flexural strengthening of a continuous I-steel beam using FRP laminate under thermomechanical loading", Struct. Eng. Mech., 78(6), 703-714. http://doi.org/10.12989/sem.2021.78.6.703.
  65. Rabia, B., Abderezak, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Adv. Mater. Res., 7(1), 29-44. https://doi.org/10.12989/amr.2018.7.1.029.
  66. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601.
  67. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  68. Rabia, B., Daouadji, T.H. and Abderezak, R. (2021b), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. http://doi.org/10.12989/cme.2021.3.1.041.
  69. Rabia, B., Hassaine Daouadji, T. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265.
  70. Radnic, J., Markic, R., Grgic, N. and Cubela, D. (2019), "New approach for Ductility analysis of partially prestressed concrete girders", Struct. Eng. Mech., 70(3), 257-267. http://doi.org/10.12989/sem.2019.70.3.257.
  71. Ramesh, B., Eswari, S. and Sundararajan, T. (2020), "Flexural behavior of glass fiber reinforced polymer (GFRP) laminated hybrid-fibre reinforced concrete beams", SN Appl. Sci., 2, 204. https://doi.org/10.1007/s42452-020-1966-2.
  72. Salama, A.S.D., Hawileh, R.A. and Abdalla, J.A. (2019), "Performance of externally strengthened RC beams with side-bonded CFRP sheets", Compos. Struct., 212, 281-290. https://doi.org/10.1016/j.compstruct.2019.01.045.
  73. Sohail, M.G., Al Nuaimi, N., Hawileh, R.A., Abdalla, J.A. and Douier, K. (2021), "Durability of plain concrete prism strengthened with galvanized steel mesh and CFRP laminates under harsh environmental conditions", Constr. Build. Mater., 286, 122904. https://doi.org/10.1016/j.conbuildmat.2021.122904.
  74. Tahar, H.D., Boussad, A., Abderezak, R., Rabia, B., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fiber reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409.
  75. Tahar, H.D., Tayeb, B., Abderezak, R. and Tounsi, A. (2021a), "New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319-332. http://doi.org/10.12989/sem.2021.78.3.31.
  76. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.
  77. Tsong, Y., Huang, Y.L. and Tang, J.W. (1989), "Amelioration of stirrup and compression reinforcement on the ductility of reinforced high-strength concrete beam", Proceeding of the Sessions Related to Seismic Engineering and Structures Congress, San Francisco, CA, USA.
  78. Upadhyaya, S., Nanda, B. and Panigrahi, R. (2020), "Effect of granite dust as partial replacement to natural sand on strength and ductility of reinforced concrete beams", J. Inst. Eng. India Ser. A, 101, 669-677. https://doi.org/10.1007/s40030-020-00472-2.
  79. Wang, X. (2015), "Analytical load-deflection equations for beam and 2-d panel with a bilinear moment-curvature model", Master's Thesis, Arizona State University, USA.
  80. Yang, I.H., Park, J., Bui, T.Q., Kim, K.C., Joh, C. and Lee, H. (2020), "An experimental study on the ductility and flexural toughness of ultrahigh-performance concrete beams subjected to bending", Mater., 13(10), 2225. https://doi.org/10.3390/ma13102225.
  81. Zhao, X.M., Wu, Y.F., Leung, A.Y. (2012), "Analyses of plastic hinge regions in reinforced concrete beams under monotonic loading", Eng. Struct., 34, 466-482. https://doi.org/10.1016/j.engstruct.2011.10.016.
  82. Zhao, X.M., Wu, Y.F., Leung, A.Y. and Lam, H.F. (2011), "Plastic hinge length in reinforced concrete flexural members", Procedia Eng., 14, 1266-1274. https://doi.org/10.1016/j.proeng.2011.07.159.
  83. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797.