DOI QR코드

DOI QR Code

Recent Spatial and Temporal Trends of Malaria in Korea

  • Kim, Yeong Hoon (Department of Ophthalmology, College of Medicine, Catholic University of Korea) ;
  • Ahn, Hye-Jin (Department of Parasitology, College of Medicine, Catholic University of Korea) ;
  • Kim, Dongjae (Department of Biomedicine Health Science, College of Medicine, The Catholic University of Korea) ;
  • Hong, Sung-Jong (Convergence Research Center for Insect Vectors, Incheon National University) ;
  • Kim, Tong-Soo (Convergence Research Center for Insect Vectors, Incheon National University) ;
  • Nam, Ho-Woo (Department of Parasitology, College of Medicine, Catholic University of Korea)
  • Received : 2021.11.28
  • Accepted : 2021.11.30
  • Published : 2021.12.31

Abstract

This study was done to provide an analytical overview on the latest malaria infection clusters by evaluating temporal trends during 2010-2019 in Korea. Incheon was the most likely cluster (MLC) for all cases of malaria during the total period. MLCs for P. falciparum, vivax, malariae, ovale, and clinically diagnosed malaria without parasitological confirmation were Jeollanam-do, Incheon, Gangwon-do, Gyeongsangnam-do, and Jeollabuk-do, respectively. Malaria was decreasing in most significant clusters, but Gwangju showed an increase for all cases of malaria, P. vivax and clinically diagnosed cases. Malaria overall, P. falciparum and P. vivax seem to be under control thanks to aggressive health measures. This study might provide a sound scientific basis for future control measures against malaria in Korea.

Keywords

Acknowledgement

I dedicate this study to my late father Han Doo Kim, who has made me what I am today, and who with his intense curiosity for all things, taught me to strive for knowledge above all. This study was supported by a research grant from the Korean Association of Health Promotion (No. 2015-01), Republic of Korea.

References

  1. Franklinos LHV, Jones KE, Redding DW, Abubakar I. The effect of global change on mosquito-borne disease. Lancet Infect Dis 2019; 19: 302-312. https://doi.org/10.1016/S1473-3099(19)30161-6
  2. Huang YJS, Higgs S, Vanlandingham DL. Emergence and re-emergence of mosquito-borne arboviruses. Curr Opin Virol 2019; 34: 104-109 https://doi.org/10.1016/j.coviro.2019.01.001
  3. Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 2012; 380: 1946-1955. https://doi.org/10.1016/S0140-6736(12)61151-9
  4. Bahk YY, Park SH, Kim-Jeon MD, Oh SS, Jung H, Jun H, Kim KA, Park JM, Ahn SK, Lee J, Choi EJ, Moon BS, Gong YW, Kwon MJ, Kim TS. Monitoring culicine mosquitoes (diptera: culicidae) as a vector of flavivirus in incheon metropolitan city and Hwaseong-Si, Gyeonggi-Do, Korea, during 2019. Korean J Parasitol 2020; 58: 551-558. https://doi.org/10.3347/kjp.2020.58.5.551
  5. Carter R, Mendis KN. Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev 2002; 15: 564-594. https://doi.org/10.1128/cmr.15.4.564-594.2002
  6. Lee SK, Hu F, Firdaus ER, Park JH, Han JH, Lee SE, Shin HI, Cho SH, Park WS, Lu F, Han ET. Surveillance on the vivax malaria in endemic areas in the Republic of Korea based on molecular and serological analyses. Korean J Parasitol 2020; 58: 609-617. https://doi.org/10.3347/kjp.2020.58.6.609
  7. Bahk YY, Lee HW, Na BK, Kim J, Jin K, Hong YS, Kim TS. Epidemiological characteristics of re-emerging vivax malaria in the Republic of Korea (1993-2017). Korean J Parasitol 2018; 56: 531-543. https://doi.org/10.3347/kjp.2018.56.6.531
  8. Chai JY. Re-emerging Plasmodium vivax malaria in the Republic of Korea. Korean J Parasitol 1999; 37: 129-143. https://doi.org/10.3347/kjp.1999.37.3.129
  9. Collins WE, Jeffery GM. Plasmodium malariae: parasite and disease. Clin Microbiol Rev 2007; 20: 579-592. https://doi.org/10.1128/CMR.00027-07
  10. Shin HI, Ku B, Kim YJ, Kim TY, Cho SH, Lee SE. Diagnosis and molecular analysis on imported Plasmodium ovale curtisi and P. ovale wallikeri malaria cases from West and South Africa during 2013-2016. Korean J Parasitol 2020; 58: 61-65. https://doi.org/10.3347/kjp.2020.58.1.61
  11. Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. Stat Med 1995; 14: 799-810. https://doi.org/https://doi.org/10.1002/sim.4780140809
  12. Mathes RW, Lall R, Levin-Rector A, Sell J, Paladini M, Konty KJ, Olson D, Weiss D. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system. PLoS One 2017; 12: e0184419. https://doi.org/10.1371/journal.pone.0184419
  13. Stelling J, Yih WK, Galas M, Kulldorff M, Pichel M, Terragno R, Tuduri E, Espetxe S, Binsztein N, O'Brien TF, Platt R. Automated use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect 2010; 138: 873-883. https://doi.org/10.1017/S0950268809990884
  14. Kulldorff M. A spatial scan statistic. Commun Stat Theory Methods 1997; 26: 1481-1496. https://doi.org/10.1080/03610929708831995
  15. Chen J, Roth RE, Naito AT, Lengerich EJ, MacEachren AM. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality. Int J Health Geogr 2008; 7: 57. https://doi.org/10.1186/1476-072X-7-57
  16. Azage M, Kumie A, Worku A, Bagtzoglou AC. Childhood diarrhea exhibits spatiotemporal variation in Northwest Ethiopia: a SaTScan spatial statistical analysis. PLoS One 2015; 10: e0144690. https://doi.org/10.1371/journal.pone.0144690
  17. Park SH, Jegal S, Ahn SK, Jung H, Lee J, Na BK, Hong SJ, Bahk YY, Kim TS. Diagnostic performance of three rapid diagnostic test kits for malaria parasite Plasmodium falciparum. Korean J Parasitol 2020; 58: 147-152. https://doi.org/10.3347/kjp.2020.58.2.147
  18. Organization WH. Synopsis of the world malaria situation, 1979. Wkly Epidem Rec 1981; 56: 145-149. https://apps.who.int/iris/handle/10665/223485
  19. Iwagami M, Hwang SY, Fukumoto M, Hayakawa T, Tanabe K, Kim SH, Kho WG, Kano S. Geographical origin of Plasmodium vivax in the Republic of Korea: haplotype network analysis based on the parasite's mitochondrial genome. Malar J 2010; 9: 184. https://doi.org/10.1186/1475-2875-9-184
  20. Collins WE, Jeffery GM. Plasmodium malariae: parasite and disease. Clin Microbiol Rev 2007; 20: 579-592. https://doi.org/10.1128/CMR.00027-07
  21. Li P, Zhao Z, Xing H, Li W, Zhu X, Cao Y, Yang Z, Sattabongkot J, Yan G, Fan Q, Cui L. Plasmodium malariae and Plasmodium ovale infections in the China-Myanmar border area. Malaria J 2016; 15: 557. https://doi.org/10.1186/s12936-016-1605-y
  22. Kim G, Hong HL, Kim SY, Lee HR, Kim DG, Park S, Shin HS, Chin BS, Kim Y. Mixed infection with Plasmodium falciparum and Plasmodium ovale in a returned traveller: the first case in Korea. J Korean Med Sci 2019; 34: 23-23. https://doi.org/10.3346/jkms.2019.34.e23