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[Abstract]

OpenGL compute shader is a shader stage that operate differently from other shader stage and it can 

be used for the calculating purpose of any data in parallel. This paper proposes a GPU-based parallel 

algorithm for computing sparse linear systems through conjugate gradient using an iterative method, 

which perform calculation on OpenGL compute shader. Basically, this sparse linear solver is used to 

solve large linear systems such as symmetric positive definite matrix. Four well-known matrix formats 

(Dense, COO, ELL and CSR) have been used for matrix storage. The performance comparison from 

our experimental tests using eight sparse matrices shows that GPU-based linear solving system much 

faster than CPU-based linear solving system with the best average computing time 0.64ms in 

GPU-based and 15.37ms in CPU-based. 
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[요   약]

OpenGL compute shader는 다른 shader 단계와 다르게 동작하며, 병렬로 모든 데이터를 계산하는 

데 사용할 수 있다. 본 논문은 OpenGL compute shader에서 반복 켤레 기울기 방법을 통해 희소 

선형 시스템을 계산하기 위한 GPU 기반의 병렬 알고리즘 제안하였다. 제안된 희소 선형 해결 방

법은 대칭인 양의 정부호 행렬과 같은 대형 선형 시스템을 해결하기 위해 사용된다. 본 논문은 

이 알고리즘을 사용하여 매트릭스 형식이 다른 8가지 예제들에 대해서 CPU와 GPU를 기반으로 

한 성능 비교 결과를 제공한다. 본 논문은 4가지 잘 알려져 있는 매트릭스 형식(Dense, COO, ELL 

and CSR)을 매트릭스 저장소를 사용하였다. 8개의 희소 매트릭스를 사용한 성능 비교 실험에서 

GPU 기반 선형 해결 시스템이 CPU 기반 선형 해결 시스템보다 훨씬 빠르며, GPU 기반에서 

0.64ms, CPU 기반에서 15.37ms의 평균 컴퓨팅 시간을 제공한다.

▸주제어: 선형 해결, 반복 켤레 기울기법, 희소 행렬, 병렬 GPU, OpenGL Compute Shader
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I. Introduction

One of computational science and modeling 

problems is system of linear equation which is the 

fundamental part of linear algebra of modern 

mathematical problems [1]. The system of equation 

could be expressed by    where  is the 

coefficient matrix,  is right hand side vector and 

 is an unknown vector to be solved. It is very 

important to study classical algorithms for solving 

these linear system of equation and to choose 

which algorithm to solve the problem. Two major 

methods are normally used which are direct 

method and iterative method. In direct method, the 

solver algorithm tends to give the exact solution for 

the linear equation. On the other hand, iterative 

method solves a system of linear equation with an 

approximation solution and based on the 

correctness comparing to the exact solution, the 

process continues solving until the error rate is 

tidy enough [2].

Many iterative solver methods have been used 

for linear solving. In case the linear system is 

symmetric, positive and definite, we may use 

conjugate gradient (CG) as an iterative method for 

solving the system of linear equation quickly [3]. 

The performance of CG method can be speedup by 

using parallel computing in GPU which many 

processors simultaneously execute. Additionally, 

GPU-based can be use for solve large linear system 

faster than CPU due to many processor.

Generally, GPU (Graphic Processing Unit) was 

using for rendering purpose which commonly 

handle for computer graphics operation [4]. Beside 

that, GPU also provides functionality to access 

general computing, which called GPGPU (General 

Purpose Graphic Processing Unit) [5]. Since the 

GPU run on thousands of processing cores in 

massive parallelism, it’s offering the efficient 

calculation and provide real-time processing 

performance. The benefit of GPGPU is suitable for 

large scale data with many computation operations, 

which using SIMD (Single Instruction Multiple Data) 

architecture to produce effective results in term of 

latency, bandwidth and memory accessing [6]. 

Currently, the most well-known technologies that 

support GPGPU programming consist of NVIDIA’s 

CUDA, AMD’s OpenCL, OpenMP and GLSL [7], 

which supporting for GPU-based parallel processing 

This makes such a possibility for a C/C++ program 

to utilize GPU’s ability with large data in parallel.

Therefore, in this paper, we present a GPU 

algorithm to solve a system of linear equation by 

the conjugate gradient method in parallel GPU 

architecture which using OpenGL compute shader.

II. Preliminaries

1. Related works

GPU has been using as a parallel algorithm for 

decades and created tons of opportunities for 

research due to massive speed computation [8]. 

Likewise, the potential of GPU has been used for 

parallel conjugate gradient method to solve poisson 

problems [9]. In previous research from Helfenstein 

and Koko [10], the parallel preconditioned 

conjugate gradient using GPU was proposed for 

linear system which using symmetric, positive 

definite matrix and SSOR precondition. Existing 

implementation of CG algorithm used CUDA and 

OpenCL, GPU language for high performance 

computing [11]. In Mukunoki’s research [22], CG 

method was implemented on CPU and GPU and 

conducted numerical experiments on both different 

platforms then compared to existed work based on 

the ExBLAS library. Additionally, conjugate gradient 

was used in finite-element method (FEM) which 

exhibits parallelism on a GPU [23].

Likewise, Sparse Matrix-Vector Multiplication 

(SpMV) has been studied in order to accelerate 

performance computation using GPU-based 

algorithm. Different formats of sparse matrices was 

used to gain the advantage of storage and time 

consumption [12-14].
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2. OpenGL Compute Shader

OpenGL 4.3, released in 2012, contains compute 

shaders that are used exclusively for computing 

and rendering purpose. The compute shader is a 

shader stage that operate differently from other 

shader stage [15]. Furthermore, SSBO (Shader 

Storage Buffer Object), which is a buffer object that 

has been added instead of UBO (Uniform Buffer 

Object). SSBO acts as global memory in GPU which 

has potential to read and write data to memory 

with wide range arrays [16].

Executing compute shaders require a call to 

glDispatchCompute(), the CPU's OpenGL API 

function, and also defines a three-dimensional 

block of workgroup that determines where work 

group are in execution space. The computing space 

has a global workgroup (all work items within all 

workgroups) and local workgroup. Each local work 

group is then divided again into a number of 

invocations or work item. Each work item in a local 

work group also known as compute shader or 

kernel which is programmable and c like syntax. 

Figure 1 demonstrates the scheme of workload 

dimension.

3. Matrix format

The coefficient matrix which has m rows and n

columns is a matrix that contains the coefficient of 

the variable of sets in linear equation. There are 

plenty of representation methods to store the 

information of the coefficient matrix, each with 

different storage format, attribute of computation, 

storage reduction and method of fetching matrix 

entries. There may a situation when matrix 

contains most zero values, such matrix is known as 

sparse matrices. In terms of storage, sparse matrix 

contains only non-zero values since zero values 

are meaningless to a system of linear equation.

Fig. 1. Scheme of compute workload

3.1 Dense Format

Fig. 2. Example Matrix M (5x5) 

Suppose we have matrix M with five rows and 

five columns as shown in Figure 2, dense format 

contains each element value existed in matrix. This 

storage format is well-suited when the number of 

nonzero values is greater than zero value. In 

general, dense matrices can be represented using a 

simple two dimensions array. Due to the key aspect 

of vector architecture with SIMD (Single Instruction 

Multiple Data), a vector that contains all elements 

locating in matrix is required. The vector fetching 

data from left to right and top to bottom of the 

matrix. Figure 3 shows a dense format of matrix M. 

Fig. 3. Example of Dense Matrix format for matrix M

3.2 ELLPACK Format

Since matrix M has only 10 nonzero values in 25 

elements of the matrix, dense matrix format is 
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wasting plenty of element to contain zero values. 

The ELLPACK format uses two Row-by-K to store 

the matrix M which K is the maximum number of 

non-zeroes value per row in matrix [17]. ELLPACK 

requires vector A to store nonzero values and 

vector Col to store the column indices of nonzero 

value. Figure 4 shows the example of ELLPACK 

format of matrix M.

Fig. 4. ELLPACK matrix format as matrix for matrix M

In this paper, since vector architecture is used, 

the above matrix format is configured as a 

transposed vector and the sparse matrix is stored 

in the column major order.

3.3 Coordinate Format

The Coordinate format is also known as COO 

which store only nonzero value in the matrix. COO 

format is the most precise and simple format in 

term of memory allocation and data accessing that 

lead this format become properly used for the 

unstructured pattern of nonzero values locating in 

the matrix. It stores nonzero elements as an array 

of triplet [18], which each triplet contains row, 

column and value of nonzero elements respectively. 

For these reasons, COO format requires 

3-by-nonzero element for storage. Figure 5 shows 

the example of sparse matrix storage with COO 

format of matrix M.

Fig. 5. Example of COO Matrix format for matrix M

3.4 Compresses Sparse Row Format

Compresses Sparse Row format (CSR) is an 

almost similar COO format [19]. To store M matrix 

with 5x5 dimension, it requires three separate 

array, which first array (A) is used to store 

nonzero values, second array (J) is used for store 

the column indices of nonzero elements, and last 

array (I) is used for store number of each nonzeros 

value existed in each row of the matrix M plus 

number of previous nonzeros elements. In contrast, 

array I always starts with 0 and ends with the 

number nonzero, which makes it has a size equal 

to the row number plus one. Figure 6 illustrates the 

method of CSR format.

Fig. 6. Example of CSR Matrix format 

III. The Implementation

Conjugate Gradient method [20] is an iterative 

method for solving equation    with given 

matrix , vector  and unknown vector . The 

conjugate gradient method is given by following 

equation. 

       

  







      

      

 


 
  



      

Equation (1) is initial step of the algorithm. 

Commonly the input vector  can be defined as 

zero vector for initial solution in the system. So, 

equation (1) can be written as :
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     

From Equation (2) to (6) are routine to define 

solution with a finite number of iteration that 

yielding a new approximation solution. The 

conjugate gradient also converges in n iteration.

In order to implement conjugate gradient using 

CPU and GPU there were similarities. However, GPU 

implementation required reading data process from 

file and data transfer from CPU to SSBO that we 

use as a buffer for GPU computing as presented in 

Figure 7. The iterative method of the conjugate 

gradient method consists of one matrix-vector 

multiplication, three vector dot products, and three 

vector operations.

Fig. 7. Conjugate Gradient GPU implementation

Sparse matrix-vector multiplication (SpMV) 

operation is a crucial operation and requires a 

suitable matrix format for accelerating. For each 

SpMV compute shader, workload dimension is 

different in term of SSBO access by each invocation. 

For dense format SpMV algorithm is presented in 

Table 1, we require two-dimension of work item or 

invocation which size of X refers to the number 

row in matrix and Y dimension refer to the number 

of columns in matrix. In order to access each 

matrix element by index of invocation properly, the 

proposed algorithm uses gl_GlobalInvocationID

which is exact value of WorkGroupID * 

WorkGroupSize + LocalInvocationID. Since dense 

matrices are mapping to buffer and accessing 

arrays like, index of buffer computation is following 

by equation in Figure 8.

Fig. 8. Assessing matrix by 2D workgroup and index 

Once a product of each element of dense matrix 

with vector P is completed, new data should be 

written concurrently to result buffer. There could 

had problem on writing data process which called 

races in global data. To solve that, atomicAdd is 

used for writing new data to SSBO simultaneously.

Algorithm: SpMV on Dense format

Input: SSBO A, P, Row, Column

Output: SSBO Result

1: i → gl_GlobalInvocationID.x 

2: j → gl_GlobalInvocationID.y 

3: if i < Row and j < Column then

4:    index → i * Column + j

5:    result → A[index] * P[j]

6:    atomicAdd(Result[i], result)

7: end if     

Table 1. Dense format SpMV Compute Shader
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Table 2 demonstrated the algorithm of SpMV on 

ELL format. The algorithm requires one-dimension 

of invocation, which global size equal to length of 

Value A array and ACol (Column Vector) array. 

Since compute shader is used, we may potentially 

send data through uniform variable (Row & 

densest) to compute shader. This algorithm runs as 

one thread per matrix row and coalesced memory 

access which made memory access to array A and 

ACol turn into a single transaction.

Algorithm: SpMV on ELL format

Input: SSBO A, ACol, P, Row, densest 

Output: SSBO Result

1: i → gl_GlobalInvocationID.x 

2: if i < Row then 

3:   sum → 0

4:   for col → 0 to densest do

5:       idx → col*Row + i

6:       j → ACol[idx]  

7:       if j ≠ -1 then

8:         sum → sum + A[idx] * P[j]

9:       end if 

10:   end for

11: Result[i] → sum

12: end if     

Table 2. ELL format SpMV Compute Shader

Algorithm: SpMV on COO format

Input: SSBO A, Rows, Cols, P 

Output: SSBO Result

1: i → gl_GlobalInvocationID.x 

2: if i < nnz then  

3:   value = A[i]  

4:   r → Rows[i]

5:   c → Cols[i] 

6:   value → value * P[c]

7:   atomicAdd(Result[r],value)

8 end if    

Table 3. COO format SpMV Compute Shader

SpMV on COO format as shown in Table 3 

process each nonzero element which made global 

invocation index used for access each nonzero 

value to product with vector and explicitly row and 

column index of matrix stored in SSBO is used as 

well. After completing sparse matrix product with 

vector, result is written to Result SSBO by 

atomicAdd operation. 

Table 4 illustrates the CSR SpMV compute shader 

which, almost identical to COO format excepts 

compressed row array (IA array) and uses one 

thread per row of matrix for parallel computing 

which commonly called scalar kernel.

Algorithm: SpMV on CSR format

Input: SSBO A, IA, JA, P, Row 

Output: SSBO Result

1: i → gl_GlobalInvocationID.x  

2: if i < Row then

3    value → 0

3:   rowStart → IA[i]  

4:   rowEnd → IA[i+1]

5:   for j = rowStart to rowEnd do 

6:      value → value + A[j] * P[JA[j]]

7:   end for

8:   Result[i] → value

9: end if  

Table 4. CSR format SpMV Compute Shader

IV. Experiment Results 

In our experiment, we conducted a measurement 

execution time for conjugate gradient method at 

one iteration by using a naive approach 

(CPU-based) running on single core compared to 

our approach which uses parallelized GPU-based 

linear solving implemented by OpenGL compute 

shader. We also provide the different result 

between each sparse matrix format in Table 5 and 

Table 6. Therefore, C++ Library is used for 

retrieving execution time for CPU implementation. 

Likewise, OpenGL is used for obtaining duration of 

GPU algorithm as well. The proposed algorithm is 

implemented with Visual Studio 2013 and run on 

Window platform with i7-00 CPU, 16GB RAM and 

use NVDIA GeForce GTX 1070 8GB VRAM.

Sparse matrices dataset from [21] is used for the 

proposed method as well. Each right hand side 

vector element are made by sum of each row of 

matrices. Table 5 shows the matrix information 

which are used to experimental test. All matrices 

using for experimental test are general problem of 
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computational fluid dynamics problem except lhr07. 

lhr07 is problem of chemical process simulation 

and kineticBatchReactor_2 is problem of optimal 

control problem. In addition, all matrices are real 

and structured. However, only ex15 is symmetric 

and positive definite and kineticBatchReactor_2 is 

symmetric but indefinite.

Name Size Nonzero rate

cavity21 4,562x4,562 131,735 0.63%

lhr07 7,337x7,337 154,660 0.28%

goodwin 7,320x7,320 324,772 0.60%

ex15 6,867x6,867 98,671 0.20%

shyy41 4,720x4,720 20,042 0.08%

kineticBatchRea

ctor_2
4,361x4,361 44,840 0.23%

tols4000 4,000x4,000 8,784 0.05%

rdb5000 5,000x5,000 29,600 0.11%

Table 5. Sparse Matrices Data

In Table 8, the comparison of performance 

results have been shown that GPU-based parallel 

linear solving system with dense format is average 

233 times faster than CPU-based linear solving 

system, but it wastes significant amount of memory 

compares with other formats. ELL format wastes 

less memory for allocation and average 174 times 

faster than CPU-based linear solving system, but it 

is not suitable for unstructured pattern of nonzero 

values. While COO format is the most uses in 

general pattern and takes less time for computation 

in both CPU-based and GPU-based linear solving 

system with average speed up ratio 20 times. CSR 

format also has a good performance in both 

implementation with the result that the GPU-based 

linear solving system is average 24 times faster 

than CPU-based linear solving system.

Furthermore, the comparison of average 

computing time for each format of CPU-based and 

GPU-based linear solving system have shown that 

CSR format improves the performance of conjugate 

gradients algorithm. Beside that, ELL also offers an 

acceptable performance but this format can not be 

used as general representation for sparse matrix.

Matrices Dense ELL COO CSR

cavity21 1,623 45 30 20

lhr07 4,137 76 35 25

goodwin 4,241 133 76 49

ex15 3,750 19 22 15

shyy41 1,751 4 3 2

kineticBatchRea

ctor_2
1,518 961 10 7

tols4000 1,318 60 1 1

rdb5000 1,986 4 7 4

Avg. 

compt. Time
2540.5 162.75 23 15.37

Table 6. CPU Implemented CG Algorithm perform 

for one iteration and measure in millisecond

Matrices Dense ELL COO CSR

cavity21 6.7 0.66 0.88 0.66

lhr07 21.59 0.67 1.1 0.7

goodwin 20.36 0.73 1.51 0.81

ex15 18.23 0.21 0.94 0.31

shyy41 6.85 0.77 0.79 0.85

kineticBatchRea

ctor_2
6.39 1.16 0.76 0.6

tols4000 5 0.6 0.56 0.44

rdb5000 7.65 0.77 0.83 0.78

Avg. 

compt. Time
11.59 0.69 0.92 0.64

Table 7. GPU Implemented CG Algorithm perform 

for one iteration and measure in millisecond

Matrices Dense ELL COO CSR

cavity21 242.23 68.18 34.09 30.3

lhr07 191.61 113.43 31.81 35.71

goodwin 208.3 182.19 50.11 60.49

ex15 205.7 90.47 23.4 48.38

shyy41 255.62 5.19 3.79 2.35

kineticBatchRea

ctor_2
237.55 828.44 13.15 11.66

tols4000 263.6 100 1.78 2.27

rdb5000 259.6 5.19 8.43 5.12

Avg 233.02 174.13 20.82 24.53

Table 8. Speed up ratio (CPU/GPU)

V. Conclusion

The proposed GPU-parallel algorithm for sparse 

linear solving by conjugate gradient method using 

OpenGL compute shader for any system matrices 

are symmetric, positive and definite. Different 

storage format of sparse matrices are used in 

order to achieve excellent performance and saving 

memory as much as possible. The proposed 
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method also have composed GPU library which 

supports with OpenGL compute shader by utilize 

data using atomic operation on SSBO. 

In conclusion, GPU-based parallel linear solving 

algorithm for computing sparse linear systems 

through conjugate gradients using an iterative 

method, which applies CSR format as matrix 

storage offers the best performance with average 

computing time 15.37 ms in CPU-based parallel 

linear solving algorithm and 0.64 ms in GPU-based 

parallel linear solving algorithm for all cases. ELL 

format also achieve good performance in 

GPU-based with average executing time 0.69 ms 

and COO format is 0.92 ms. The result proves that 

CSR format is a suitable format in general case of 

sparse matrix in term of storage and parallelization 

which lead the CG solver achieve great 

performance.

In future work, our approach can use for solving 

dynamic simulation problems such as node-node 

constraints in order to maintain distance of each 

constraint in deformable object by using 

GPU-based CG solver.
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