
JKSCI
한국컴퓨터정보학회논문지

Journal of The Korea Society of Computer and Information

Vol. 26 No. 1, pp. 1-9, January 2021

https://doi.org/10.9708/jksci.2021.26.01.001

Parallel Algorithm of Conjugate Gradient Solver using

OpenGL Compute Shader

Hongly Va*, Do-keyong Lee*, Min Hong**

*Student, School of Software Convergence, Soonchunhyang University, Asan, Korea

*Student, School of Software Convergence, Soonchunhyang University, Asan, Korea

**Professor, Dept. of Software Convergence, Soonchunhyang University, Asan, Korea

[Abstract]

OpenGL compute shader is a shader stage that operate differently from other shader stage and it can

be used for the calculating purpose of any data in parallel. This paper proposes a GPU-based parallel

algorithm for computing sparse linear systems through conjugate gradient using an iterative method,

which perform calculation on OpenGL compute shader. Basically, this sparse linear solver is used to

solve large linear systems such as symmetric positive definite matrix. Four well-known matrix formats

(Dense, COO, ELL and CSR) have been used for matrix storage. The performance comparison from

our experimental tests using eight sparse matrices shows that GPU-based linear solving system much

faster than CPU-based linear solving system with the best average computing time 0.64ms in

GPU-based and 15.37ms in CPU-based.

▸Key words: Linear Solving, Conjugate Gradient, Sparse Matrix, Parallel GPU, OpenGL Compute Shader

[요 약]

OpenGL compute shader는 다른 shader 단계와 다르게 동작하며, 병렬로 모든 데이터를 계산하는

데 사용할 수 있다. 본 논문은 OpenGL compute shader에서 반복 켤레 기울기 방법을 통해 희소

선형 시스템을 계산하기 위한 GPU 기반의 병렬 알고리즘 제안하였다. 제안된 희소 선형 해결 방

법은 대칭인 양의 정부호 행렬과 같은 대형 선형 시스템을 해결하기 위해 사용된다. 본 논문은

이 알고리즘을 사용하여 매트릭스 형식이 다른 8가지 예제들에 대해서 CPU와 GPU를 기반으로

한 성능 비교 결과를 제공한다. 본 논문은 4가지 잘 알려져 있는 매트릭스 형식(Dense, COO, ELL

and CSR)을 매트릭스 저장소를 사용하였다. 8개의 희소 매트릭스를 사용한 성능 비교 실험에서

GPU 기반 선형 해결 시스템이 CPU 기반 선형 해결 시스템보다 훨씬 빠르며, GPU 기반에서

0.64ms, CPU 기반에서 15.37ms의 평균 컴퓨팅 시간을 제공한다.

▸주제어: 선형 해결, 반복 켤레 기울기법, 희소 행렬, 병렬 GPU, OpenGL Compute Shader

∙First Author: Hongly Va, Corresponding Author: Min Hong
 *Hongly Va (vahonglykhmer@gmail.com), School of Software Convergence, Soonchunhyang University
 *Do-keyong Lee (dooky606@daum.net), School of Software Convergence, Soonchunhyang University
 **Min Hong (mhong@sch.ac.kr), Dept. of Software Convergence, Soonchunhyang University
∙Received: 2021. 01. 15, Revised: 2021. 01. 28, Accepted: 2021. 01. 28.

Copyright ⓒ 2021 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

2 Journal of The Korea Society of Computer and Information

I. Introduction

One of computational science and modeling

problems is system of linear equation which is the

fundamental part of linear algebra of modern

mathematical problems [1]. The system of equation

could be expressed by    where  is the

coefficient matrix,  is right hand side vector and

 is an unknown vector to be solved. It is very

important to study classical algorithms for solving

these linear system of equation and to choose

which algorithm to solve the problem. Two major

methods are normally used which are direct

method and iterative method. In direct method, the

solver algorithm tends to give the exact solution for

the linear equation. On the other hand, iterative

method solves a system of linear equation with an

approximation solution and based on the

correctness comparing to the exact solution, the

process continues solving until the error rate is

tidy enough [2].

Many iterative solver methods have been used

for linear solving. In case the linear system is

symmetric, positive and definite, we may use

conjugate gradient (CG) as an iterative method for

solving the system of linear equation quickly [3].

The performance of CG method can be speedup by

using parallel computing in GPU which many

processors simultaneously execute. Additionally,

GPU-based can be use for solve large linear system

faster than CPU due to many processor.

Generally, GPU (Graphic Processing Unit) was

using for rendering purpose which commonly

handle for computer graphics operation [4]. Beside

that, GPU also provides functionality to access

general computing, which called GPGPU (General

Purpose Graphic Processing Unit) [5]. Since the

GPU run on thousands of processing cores in

massive parallelism, it’s offering the efficient

calculation and provide real-time processing

performance. The benefit of GPGPU is suitable for

large scale data with many computation operations,

which using SIMD (Single Instruction Multiple Data)

architecture to produce effective results in term of

latency, bandwidth and memory accessing [6].

Currently, the most well-known technologies that

support GPGPU programming consist of NVIDIA’s

CUDA, AMD’s OpenCL, OpenMP and GLSL [7],

which supporting for GPU-based parallel processing

This makes such a possibility for a C/C++ program

to utilize GPU’s ability with large data in parallel.

Therefore, in this paper, we present a GPU

algorithm to solve a system of linear equation by

the conjugate gradient method in parallel GPU

architecture which using OpenGL compute shader.

II. Preliminaries

1. Related works

GPU has been using as a parallel algorithm for

decades and created tons of opportunities for

research due to massive speed computation [8].

Likewise, the potential of GPU has been used for

parallel conjugate gradient method to solve poisson

problems [9]. In previous research from Helfenstein

and Koko [10], the parallel preconditioned

conjugate gradient using GPU was proposed for

linear system which using symmetric, positive

definite matrix and SSOR precondition. Existing

implementation of CG algorithm used CUDA and

OpenCL, GPU language for high performance

computing [11]. In Mukunoki’s research [22], CG

method was implemented on CPU and GPU and

conducted numerical experiments on both different

platforms then compared to existed work based on

the ExBLAS library. Additionally, conjugate gradient

was used in finite-element method (FEM) which

exhibits parallelism on a GPU [23].

Likewise, Sparse Matrix-Vector Multiplication

(SpMV) has been studied in order to accelerate

performance computation using GPU-based

algorithm. Different formats of sparse matrices was

used to gain the advantage of storage and time

consumption [12-14].

Parallel Algorithm of Conjugate Gradient Solver using OpenGL Compute Shader 3

2. OpenGL Compute Shader

OpenGL 4.3, released in 2012, contains compute

shaders that are used exclusively for computing

and rendering purpose. The compute shader is a

shader stage that operate differently from other

shader stage [15]. Furthermore, SSBO (Shader

Storage Buffer Object), which is a buffer object that

has been added instead of UBO (Uniform Buffer

Object). SSBO acts as global memory in GPU which

has potential to read and write data to memory

with wide range arrays [16].

Executing compute shaders require a call to

glDispatchCompute(), the CPU's OpenGL API

function, and also defines a three-dimensional

block of workgroup that determines where work

group are in execution space. The computing space

has a global workgroup (all work items within all

workgroups) and local workgroup. Each local work

group is then divided again into a number of

invocations or work item. Each work item in a local

work group also known as compute shader or

kernel which is programmable and c like syntax.

Figure 1 demonstrates the scheme of workload

dimension.

3. Matrix format

The coefficient matrix which has m rows and n

columns is a matrix that contains the coefficient of

the variable of sets in linear equation. There are

plenty of representation methods to store the

information of the coefficient matrix, each with

different storage format, attribute of computation,

storage reduction and method of fetching matrix

entries. There may a situation when matrix

contains most zero values, such matrix is known as

sparse matrices. In terms of storage, sparse matrix

contains only non-zero values since zero values

are meaningless to a system of linear equation.

Fig. 1. Scheme of compute workload

3.1 Dense Format

Fig. 2. Example Matrix M (5x5)

Suppose we have matrix M with five rows and

five columns as shown in Figure 2, dense format

contains each element value existed in matrix. This

storage format is well-suited when the number of

nonzero values is greater than zero value. In

general, dense matrices can be represented using a

simple two dimensions array. Due to the key aspect

of vector architecture with SIMD (Single Instruction

Multiple Data), a vector that contains all elements

locating in matrix is required. The vector fetching

data from left to right and top to bottom of the

matrix. Figure 3 shows a dense format of matrix M.

Fig. 3. Example of Dense Matrix format for matrix M

3.2 ELLPACK Format

Since matrix M has only 10 nonzero values in 25

elements of the matrix, dense matrix format is

4 Journal of The Korea Society of Computer and Information

wasting plenty of element to contain zero values.

The ELLPACK format uses two Row-by-K to store

the matrix M which K is the maximum number of

non-zeroes value per row in matrix [17]. ELLPACK

requires vector A to store nonzero values and

vector Col to store the column indices of nonzero

value. Figure 4 shows the example of ELLPACK

format of matrix M.

Fig. 4. ELLPACK matrix format as matrix for matrix M

In this paper, since vector architecture is used,

the above matrix format is configured as a

transposed vector and the sparse matrix is stored

in the column major order.

3.3 Coordinate Format

The Coordinate format is also known as COO

which store only nonzero value in the matrix. COO

format is the most precise and simple format in

term of memory allocation and data accessing that

lead this format become properly used for the

unstructured pattern of nonzero values locating in

the matrix. It stores nonzero elements as an array

of triplet [18], which each triplet contains row,

column and value of nonzero elements respectively.

For these reasons, COO format requires

3-by-nonzero element for storage. Figure 5 shows

the example of sparse matrix storage with COO

format of matrix M.

Fig. 5. Example of COO Matrix format for matrix M

3.4 Compresses Sparse Row Format

Compresses Sparse Row format (CSR) is an

almost similar COO format [19]. To store M matrix

with 5x5 dimension, it requires three separate

array, which first array (A) is used to store

nonzero values, second array (J) is used for store

the column indices of nonzero elements, and last

array (I) is used for store number of each nonzeros

value existed in each row of the matrix M plus

number of previous nonzeros elements. In contrast,

array I always starts with 0 and ends with the

number nonzero, which makes it has a size equal

to the row number plus one. Figure 6 illustrates the

method of CSR format.

Fig. 6. Example of CSR Matrix format

III. The Implementation

Conjugate Gradient method [20] is an iterative

method for solving equation    with given

matrix , vector  and unknown vector . The

conjugate gradient method is given by following

equation.

       

  







      

      

 


 
  



      

Equation (1) is initial step of the algorithm.

Commonly the input vector  can be defined as

zero vector for initial solution in the system. So,

equation (1) can be written as :

Parallel Algorithm of Conjugate Gradient Solver using OpenGL Compute Shader 5

     

From Equation (2) to (6) are routine to define

solution with a finite number of iteration that

yielding a new approximation solution. The

conjugate gradient also converges in n iteration.

In order to implement conjugate gradient using

CPU and GPU there were similarities. However, GPU

implementation required reading data process from

file and data transfer from CPU to SSBO that we

use as a buffer for GPU computing as presented in

Figure 7. The iterative method of the conjugate

gradient method consists of one matrix-vector

multiplication, three vector dot products, and three

vector operations.

Fig. 7. Conjugate Gradient GPU implementation

Sparse matrix-vector multiplication (SpMV)

operation is a crucial operation and requires a

suitable matrix format for accelerating. For each

SpMV compute shader, workload dimension is

different in term of SSBO access by each invocation.

For dense format SpMV algorithm is presented in

Table 1, we require two-dimension of work item or

invocation which size of X refers to the number

row in matrix and Y dimension refer to the number

of columns in matrix. In order to access each

matrix element by index of invocation properly, the

proposed algorithm uses gl_GlobalInvocationID

which is exact value of WorkGroupID *

WorkGroupSize + LocalInvocationID. Since dense

matrices are mapping to buffer and accessing

arrays like, index of buffer computation is following

by equation in Figure 8.

Fig. 8. Assessing matrix by 2D workgroup and index

Once a product of each element of dense matrix

with vector P is completed, new data should be

written concurrently to result buffer. There could

had problem on writing data process which called

races in global data. To solve that, atomicAdd is

used for writing new data to SSBO simultaneously.

Algorithm: SpMV on Dense format

Input: SSBO A, P, Row, Column

Output: SSBO Result

1: i → gl_GlobalInvocationID.x

2: j → gl_GlobalInvocationID.y

3: if i < Row and j < Column then

4: index → i * Column + j

5: result → A[index] * P[j]

6: atomicAdd(Result[i], result)

7: end if

Table 1. Dense format SpMV Compute Shader

6 Journal of The Korea Society of Computer and Information

Table 2 demonstrated the algorithm of SpMV on

ELL format. The algorithm requires one-dimension

of invocation, which global size equal to length of

Value A array and ACol (Column Vector) array.

Since compute shader is used, we may potentially

send data through uniform variable (Row &

densest) to compute shader. This algorithm runs as

one thread per matrix row and coalesced memory

access which made memory access to array A and

ACol turn into a single transaction.

Algorithm: SpMV on ELL format

Input: SSBO A, ACol, P, Row, densest

Output: SSBO Result

1: i → gl_GlobalInvocationID.x

2: if i < Row then

3: sum → 0

4: for col → 0 to densest do

5: idx → col*Row + i

6: j → ACol[idx]

7: if j ≠ -1 then

8: sum → sum + A[idx] * P[j]

9: end if

10: end for

11: Result[i] → sum

12: end if

Table 2. ELL format SpMV Compute Shader

Algorithm: SpMV on COO format

Input: SSBO A, Rows, Cols, P

Output: SSBO Result

1: i → gl_GlobalInvocationID.x

2: if i < nnz then

3: value = A[i]

4: r → Rows[i]

5: c → Cols[i]

6: value → value * P[c]

7: atomicAdd(Result[r],value)

8 end if

Table 3. COO format SpMV Compute Shader

SpMV on COO format as shown in Table 3

process each nonzero element which made global

invocation index used for access each nonzero

value to product with vector and explicitly row and

column index of matrix stored in SSBO is used as

well. After completing sparse matrix product with

vector, result is written to Result SSBO by

atomicAdd operation.

Table 4 illustrates the CSR SpMV compute shader

which, almost identical to COO format excepts

compressed row array (IA array) and uses one

thread per row of matrix for parallel computing

which commonly called scalar kernel.

Algorithm: SpMV on CSR format

Input: SSBO A, IA, JA, P, Row

Output: SSBO Result

1: i → gl_GlobalInvocationID.x

2: if i < Row then

3 value → 0

3: rowStart → IA[i]

4: rowEnd → IA[i+1]

5: for j = rowStart to rowEnd do

6: value → value + A[j] * P[JA[j]]

7: end for

8: Result[i] → value

9: end if

Table 4. CSR format SpMV Compute Shader

IV. Experiment Results

In our experiment, we conducted a measurement

execution time for conjugate gradient method at

one iteration by using a naive approach

(CPU-based) running on single core compared to

our approach which uses parallelized GPU-based

linear solving implemented by OpenGL compute

shader. We also provide the different result

between each sparse matrix format in Table 5 and

Table 6. Therefore, C++ Library is used for

retrieving execution time for CPU implementation.

Likewise, OpenGL is used for obtaining duration of

GPU algorithm as well. The proposed algorithm is

implemented with Visual Studio 2013 and run on

Window platform with i7-00 CPU, 16GB RAM and

use NVDIA GeForce GTX 1070 8GB VRAM.

Sparse matrices dataset from [21] is used for the

proposed method as well. Each right hand side

vector element are made by sum of each row of

matrices. Table 5 shows the matrix information

which are used to experimental test. All matrices

using for experimental test are general problem of

Parallel Algorithm of Conjugate Gradient Solver using OpenGL Compute Shader 7

computational fluid dynamics problem except lhr07.

lhr07 is problem of chemical process simulation

and kineticBatchReactor_2 is problem of optimal

control problem. In addition, all matrices are real

and structured. However, only ex15 is symmetric

and positive definite and kineticBatchReactor_2 is

symmetric but indefinite.

Name Size Nonzero rate

cavity21 4,562x4,562 131,735 0.63%

lhr07 7,337x7,337 154,660 0.28%

goodwin 7,320x7,320 324,772 0.60%

ex15 6,867x6,867 98,671 0.20%

shyy41 4,720x4,720 20,042 0.08%

kineticBatchRea

ctor_2
4,361x4,361 44,840 0.23%

tols4000 4,000x4,000 8,784 0.05%

rdb5000 5,000x5,000 29,600 0.11%

Table 5. Sparse Matrices Data

In Table 8, the comparison of performance

results have been shown that GPU-based parallel

linear solving system with dense format is average

233 times faster than CPU-based linear solving

system, but it wastes significant amount of memory

compares with other formats. ELL format wastes

less memory for allocation and average 174 times

faster than CPU-based linear solving system, but it

is not suitable for unstructured pattern of nonzero

values. While COO format is the most uses in

general pattern and takes less time for computation

in both CPU-based and GPU-based linear solving

system with average speed up ratio 20 times. CSR

format also has a good performance in both

implementation with the result that the GPU-based

linear solving system is average 24 times faster

than CPU-based linear solving system.

Furthermore, the comparison of average

computing time for each format of CPU-based and

GPU-based linear solving system have shown that

CSR format improves the performance of conjugate

gradients algorithm. Beside that, ELL also offers an

acceptable performance but this format can not be

used as general representation for sparse matrix.

Matrices Dense ELL COO CSR

cavity21 1,623 45 30 20

lhr07 4,137 76 35 25

goodwin 4,241 133 76 49

ex15 3,750 19 22 15

shyy41 1,751 4 3 2

kineticBatchRea

ctor_2
1,518 961 10 7

tols4000 1,318 60 1 1

rdb5000 1,986 4 7 4

Avg.

compt. Time
2540.5 162.75 23 15.37

Table 6. CPU Implemented CG Algorithm perform

for one iteration and measure in millisecond

Matrices Dense ELL COO CSR

cavity21 6.7 0.66 0.88 0.66

lhr07 21.59 0.67 1.1 0.7

goodwin 20.36 0.73 1.51 0.81

ex15 18.23 0.21 0.94 0.31

shyy41 6.85 0.77 0.79 0.85

kineticBatchRea

ctor_2
6.39 1.16 0.76 0.6

tols4000 5 0.6 0.56 0.44

rdb5000 7.65 0.77 0.83 0.78

Avg.

compt. Time
11.59 0.69 0.92 0.64

Table 7. GPU Implemented CG Algorithm perform

for one iteration and measure in millisecond

Matrices Dense ELL COO CSR

cavity21 242.23 68.18 34.09 30.3

lhr07 191.61 113.43 31.81 35.71

goodwin 208.3 182.19 50.11 60.49

ex15 205.7 90.47 23.4 48.38

shyy41 255.62 5.19 3.79 2.35

kineticBatchRea

ctor_2
237.55 828.44 13.15 11.66

tols4000 263.6 100 1.78 2.27

rdb5000 259.6 5.19 8.43 5.12

Avg 233.02 174.13 20.82 24.53

Table 8. Speed up ratio (CPU/GPU)

V. Conclusion

The proposed GPU-parallel algorithm for sparse

linear solving by conjugate gradient method using

OpenGL compute shader for any system matrices

are symmetric, positive and definite. Different

storage format of sparse matrices are used in

order to achieve excellent performance and saving

memory as much as possible. The proposed

8 Journal of The Korea Society of Computer and Information

method also have composed GPU library which

supports with OpenGL compute shader by utilize

data using atomic operation on SSBO.

In conclusion, GPU-based parallel linear solving

algorithm for computing sparse linear systems

through conjugate gradients using an iterative

method, which applies CSR format as matrix

storage offers the best performance with average

computing time 15.37 ms in CPU-based parallel

linear solving algorithm and 0.64 ms in GPU-based

parallel linear solving algorithm for all cases. ELL

format also achieve good performance in

GPU-based with average executing time 0.69 ms

and COO format is 0.92 ms. The result proves that

CSR format is a suitable format in general case of

sparse matrix in term of storage and parallelization

which lead the CG solver achieve great

performance.

In future work, our approach can use for solving

dynamic simulation problems such as node-node

constraints in order to maintain distance of each

constraint in deformable object by using

GPU-based CG solver.

ACKNOWLEDGEMENT

This work was supported by Basic Science

Research Program through the National Research

Foundation of Korea (NRF-2019R1F1A1062752)

funded by the Ministry of Education, and was

supported by the Soonchunhyang University

Research Fund.

REFERENCE

[1] S. Abbasbandy, A. Jafarian, and R. Ezzati, “Conjugate gradient

method for fuzzy symmetric positive definite system of linear

equations,” Applied Mathematics and Computation, Vol. 171, No.

2, pp. 1184-1191, 2005. DOI: https://doi.org/10.1016/j.amc.2005.

01.110

[2] M. Kryshchuk, and J. Lavendels, “Iterative Method for Solving

a System of Linear Equations,” Procedia Computer Science, Vol.

104, pp. 133-137, 2017. DOI: https://doi.org/10.1016/j.procs.2017.

01.085

[3] A. Bunse-Gerstner, and R. Stöver, “On a conjugate gradient-type

method for solving complex symmetric linear systems,” Linear

Algebra and its Applications, Vol. 287, No. 1–3, pp. 105-123,

1999. DOI: https://doi.org/10.1016/S0024-3795(98)10091-5

[4] A. Cano, “A survey on graphic processing unit computing for

large-scale data mining,” WIREs Data Mining and Knowledge

Discovery, Vol, 8, No. 1, 2018. DOI: https://doi.org/10.1002/wid

m.1232

[5] J. Sim, et al, “A Performance Analysis Framework for Identifying

Potential Benefits in GPGPU Applications,” Proceedings of the

17th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, Vol. 47, No. 8, pp. 11-22, 2012. DOI:

https://doi.org/10.1145/2145816.2145819

[6] D. Gerzhoy, X. Sun, M. Zuzak, and D. Yeung, “Nested MIMD-SIMD

Parallelization for Heterogeneous Microprocessors,” ACM Trans.

Archit, Vol. 16, No. 4, 2019. DOI: https://doi.org/10.1145/3368304

[7] W. Shin, K. H. Yoo and N. Baek, “Large-Scale Data Computing

Performance Comparisons on SYCL Heterogeneous Parallel

Processing Layer Implementations,” In Appl. Sci., Vol. 10, No.

5. pp. 1656, 2020. DOI: https://doi.org/10.3390/app10051656

[8] J. S. Kirtzic, “A parallel algorithm design model for the gpu

architecture,” Ph.D. Dissertation. University of Texas at Dallas,

USA. Advisor(s) Ovidiu Daescu., 2012.

[9] M. Ament et al, "A Parallel Preconditioned Conjugate Gradient

Solver for the Poisson Problem on a Multi-GPU Platform," 2010

18th Euromicro Conference on Parallel, Distributed and

Network-based Processing, Pisa, pp. 583-592, 2010. DOI:

https://doi.org/10.1109/PDP.2010.51

[10] R. Helfenstein, and J. Koko, “Parallel preconditioned conjugate

gradient algorithm on GPU,” Journal of Computational and

Applied Mathematics, Vol. 236, No. 15. pp. 3584-2590, 2012.

DOI: https://doi.org/10.1016/j.cam.2011.04.025

[11] A. C. Ahamed, and F. Magoulès, “Conjugate gradient method

with graphics processing unit acceleration: CUDA vs OpenCL,”

Advances in Engineering Software, Vol. 111, pp. 32-42, 2017.

DOI: https://doi.org/10.1016/j.advengsoft.2016.10.002

[12] M. M. Baskaran, and R. Bordawekar, “Optimizing Sparse

Matrix-Vector Multiplications on GPUs,” Computer Science.

Vol. 8, pp. 812-47, 2009.

[13] A. Benatia, W. Ji, Y. Wang and F. Shi, “Sparse Matrix Format

Selection with Multiclass SVM for SpMV on GPU,” 2016 45th

International Conference on Parallel Processing (ICPP),

Philadelphia, pp. 496-505, 2016. DOI: https://doi.org/10.1109/IC

PP.2016.64

[14] N. Bell and M. Garland, “Implementing sparse matrix-vector

Parallel Algorithm of Conjugate Gradient Solver using OpenGL Compute Shader 9

multiplication on throughput-oriented processors,” Proceedings

of the Conference on High Performance Computing Networking,

Storage and Analysis, Portland, pp. 1-11, 2009. DOI:

https://doi.org/10.1145/1654059.1654078

[15] D. Shreiner, G. Sellers, J. Kessenich and B. Licea-Kane ,

"OpenGL programming guide: The Official guide to learning

OpenGL," version 4.3. Addison-Wesley, 2013.

[16] N. J. Sung, Y. J. Choi and M. Hong, “Parallel Structure Design

Method for Mass Spring Simulation,” Journal of the Korea

Computer Graphics Society. Vol. 25, pp. 55-63, 2019. DOI:

https://doi.org/10.15701/kcgs.2019.25.3.55

[17] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector

Multiplication on CUDA,” NVIDIA Technical Report

NVR-2008-004, December 2008.

[18] W. Cao, L. Yao, Zo. Li, Y. Wang and Z. Wang, "Implementing

Sparse Matrix-Vector multiplication using CUDA based on a

hybrid sparse matrix format," 2010 International Conference on

Computer Application and System Modeling, pp. V11-161-V11

-165, 2010. DOI: https://doi.org/10.1109/ICCASM.2010.5623237

[19] G. E. Blelloch, et al, “Segmented Operations for Sparse Matrix

Computation on Vector Multiprocessors,” Technical Report.

Carnegie Mellon University, USA. 1993.

[20] M. R. Hestenes, and E. Stiefel, “Methods of conjugate gradients

for solving linear systems,” Journal of research of the National

Bureau of Standards, Vol. 49, pp. 409-436, 1952. DOI:

https://doi.org/10.6028/jres.049.044

[21] SuiteSparse Matrix Collection, https://sparse.tamu.edu/

[22] D. Mukunoki, K. Ozaki, T. Ogita, and R. Iakymchuk “ Conjugate

Gradient Solvers with High Accuracy and Bit-wise

Reproducibility between CPU and GPU using Ozaki scheme, ”

In The International Conference on High Performance Computing

in Asia-Pacific Region, pp. 100- 109, 2021. DOI: https://doi.or

g/10.1145/3432261.3432270

[23] Pikle, N.K., Sathe, S.R. and Vyavhare, A.Y. “GPGPU-based

parallel computing applied in the FEM using the conjugate

gradient algorithm: a review,” Sādhanā, Vol.43, No. 111 2018.

DOI: https://doi.org/10.1007/s12046-018-0892-0

Authors

Hongly Va received the B.S degree in

Information Technology Engineering from

Royal University of Phnom Penh, in 2019.

He is currently an assistant professor at the

Dep. of Software Convergence at

Soonchunhyang University, Korea. His research interests are

in Computer graphics, Virtual Reality, parallel computing,

Physically-based Modeling and Simulation.

Do-keyong Lee received the B.S degree in

Law from Baekseok University in 2018. She

received the M.S degree in ICT Convergence

Rehabilitation Engineering from

Soonchunhyang University, Korea in 2020.

Now she is undertaking a Ph.D of Software Convergence

Engineering courses as a member of the computer graphics

lab at Soonchunhyang University. Her research interests are

Computer Graphics, Physically based Modeling and

Simulation

Min Hong received B.S. degree in Computer

Science from Soonchunhyang University in

1995. He received his M.S. degree in

Computer Scienceand Ph.D. degree in

Bioinformatics from the University of

Colorado in 2001 and 2005, respectively. Dr. Hong is a

professor at the Dept. of Computer Software Engineering,

Soonchunhyang University, Korea. His research interests are

in Computer Graphics, Mobile Computing, Physically based

Modeling and Simulation.

