과제정보
본 논문은 2020년도 서울시립대학교 교내학술연구비에 의하여 지원되었습니다.
참고문헌
- ADINA (2017). ADINA Release Notes Version 9.3.4, ADINA R & D, Inc., MA, USA.
- Al-Gahtani, H. and Mukhtar, F. M. (2014). "RBF-based meshless method for the vibration of beams on elastic foundations." Applied Mathematics and Computation, Vol. 249, pp. 198-208. https://doi.org/10.1016/j.amc.2014.09.097
- Baker, C. N., Azam, T. and Joseph, L. S. (1994). "Settlement analysis for 450 meter tall KLCC towers." Vertical And Horizontal Deformations of Foundations and Embankments: Proceedings Settlement '94, Geotechnical Special Publication, No. 40, pp. 1650-1671.
- Basu, D., Prezzi, M., Salgado, R. and Chakraborty, T. (2008). "Settlement analysis of piles with rectangular cross sections in multi-layered soils." Computers and Geotechnics, Vol. 35, No. 4, pp. 563-575. https://doi.org/10.1016/j.compgeo.2007.09.001
- Carpinteri, A., Malvano, R., Manuello, A. and Piana, G. (2014). "Fundamental frequency evolution in slender beams subjected to imposed axial displacements." Journal of Sound and Vibration, Vol. 333, No. 11, pp. 2390-2403. https://doi.org/10.1016/j.jsv.2014.01.018
- Cheng, Q., Wu, J., Song, Z. and Wen, H. (2012). "The behavior of a rectangular closed diaphragm wall when used as a bridge foundation." Frontiers of Structural and Civil Engineering, Vol. 6, No. 4, pp. 398-420.
- Choi, Y. S., Basu, D., Salgado, R. and Prezzi, M. (2014). "Response of laterally loaded rectangular and circular piles in soils with properties varying with depth." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No. 4, 04013049. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001067
- Fellenius, B. H., Altaee, A., Kulesza, R. and Hayes, J. (1999). "O-cell testing and FE analysis of 28-m-deep barrette in Manila, Philippines." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 7, pp. 566-575. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(566)
- Gillat, A. and Subramaniam, V. (2013). Numerical methods for engineers and scientists, 3rd edition, John Wiley and Sons, New York, USA.
- Halabe, U. B. and Jain, S. K. (1996). "Lateral free vibration of a single pile with or without an axial load." Journal of Sound and Vibration, Vol. 195, No. 3, pp. 531-544. https://doi.org/10.1006/jsvi.1996.0443
- Hamza, M. and Ibrahim, M. H. (2000). "Base and shaft grouted large diameter pile and barrettes load tests." Proceedings GeotechYear 2000: Developments in Geotechnical Engineering, pp. 219-228.
- Heelis, M. E., Pavlovic, M. N. and West, R. P. (2004). "The analytical prediction of the buckling loads of fully and partically embedded piles." Geotechnique, Vol. 54, No. 6, pp. 363-373. https://doi.org/10.1680/geot.2004.54.6.363
- Hirai, H. (2014). "Settlement analysis of rectangular piles in nonhomogeneous soil using a Winkler model approach." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 38, No. 12, pp. 1298-1320. https://doi.org/10.1002/nag.2270
- Hirai, H. (2015). "Analysis of rectangular piles subjected to lateral loads in nonhomogeneous soil using a Winkler model approach." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 39, No. 9, pp. 937-968. https://doi.org/10.1002/nag.2345
- Ho, C. E. and Lim, C. H. (1998). "Barrettes designed as friction foundations: A case history." Proceedings 4th International Conference on Case Histories in Geotechnical Engineering, pp. 236-241.
- Hong, Y. S., Yoo, J. W., Kang, S. K., Chou, M. B. and Lee, K. I. (2019). "A numerical study on the estimation method of the results of static pile load test using the results of Bi-directional pile load test of Barrette piles." Journal of Korean Geosynthetics Society, KGSS, Vol. 18, No. 1, pp. 39-53 (in Korean). https://doi.org/10.12814/JKGSS.2019.18.1.039
- Hu, C., Cheng, C. and Chen, Z. (2008). "Nonlinear transverse free vibrations of piles." Journal of Sound and Vibration, Vol. 317, No. 3-5, pp. 937-954. https://doi.org/10.1016/j.jsv.2008.03.064
- Lee, J. K. and Jeong, S. S. (2016). "Flexural and torsional free vibrations of horizontally curved beams on Pasternak foundations." Applied Mathematical Modelling, Vol. 40, No. 3, pp. 2242-2256. https://doi.org/10.1016/j.apm.2015.09.024
- Ma, J., Liu, F., Gao, X. and Nie, M. (2018). "Buckling and free vibration of a single pile considering the effect of soil-structure interaction." International Journal of Structural Stability and Dynamics, Vol. 18, No. 4, 1850061. https://doi.org/10.1142/S021945541850061X
- Maciejewska, B., Labedzki, P. A., Piasecki, A. and Piasecka, M. (2017). "Comparison of FEM calculated heat transfer coefficient in a minichannel using two approaches: Trefftz base functions and ADINA software." EPJ Web of Conferences, Vol. 143, No. 12, 02070.
- Ng, C. W. W. and Lei, G. H. (2003). "Performance of long rectangular barrettes in granitic saprolites." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 8, pp. 685-696. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(685)
- Ng, C. W. W., Rigby, D. B., Ng, S. W. L. and Lei, G. H. (2000). "Field studies of well-instrumented barrette in Hong Kong." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 1, pp. 60-73. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(60)
- Poulos, H. G., Chow, H. S. W. and Small, J. C. (2019). "The use of equivalent circular piles to model the behaviour of rectangular barrette foundations." Geotechnical Engineering Journal of the SEAGE and AGSSEA, Vol. 50, No. 3, pp. 106-109.
- Prakash, S. and Chandrasekaran, V. (1977). "Free vibration characteristics of piles." Proceedings Ninth International Conference on Soil Mechanics and Foundation Engineering, pp. 333-336.
- Prakash, S. and Sharma, H. D. (1990). Pile foundation in engineering practice, John Wiley and Sons, New York, USA.
- Rabaiotti, C. and Malecki, C. (2018). "In situ testing of barrette foundations for a high retaining wall in molasse rock." Geotechnique, Vol. 68, No. 12, pp. 1056-1070. https://doi.org/10.1680/jgeot.17.P.144
- Ragab, A. M. and Aggour, M. S. (1986). "Free vibration of a soil pile system subjected to static loading." Computers and Geotechnics, Vol. 2, No. 3, pp. 153-165. https://doi.org/10.1016/0266-352X(86)90025-X
- Ukritchon, B. and Keawsawasvong, S. (2018). "Undrained lateral capacity of rectangular piles under a general loading direction and full flow mechanism." KSCE Journal of Civil Engineering, KSCE, Vol. 22, No. 7, pp. 2256-2265. https://doi.org/10.1007/s12205-017-0062-7
- Valsangkar, A. J. and Pradhanang, R. B. (1988). "Vibration of beam-columns on two-parameter elastic foundations." Earthquake Engineering and Structural Dynamics, Vol. 16. No. 2, pp. 217-225. https://doi.org/10.1002/eqe.4290160205
- Yan, W. and Chen, W. Q. (2012). "Dynamic analysis of semirigidly connected and partially embedded piles via the method of reverberation-ray matrix." Structural Engineering and Mechanics, Vol. 42, No. 2, pp. 269-289. https://doi.org/10.12989/sem.2012.42.2.269
- Yesilce, Y. and Catal, H. H. (2008). "Free vibration of piles embedded in soil having different modulus of subgrade reaction." Applied Mathematical Modelling, Vol. 32, No. 5, pp. 889-900. https://doi.org/10.1016/j.apm.2007.02.015
- Zhang, C., Deng, P. and Ke, W. (2018). "Kinematic response of rectangular piles under S waves." Computers and Geotechnics, Vol. 102, pp. 229-237. https://doi.org/10.1016/j.compgeo.2018.06.016
- Zhang, L. M. (2003). "Behavior of laterally loaded large-section barrettes." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 7, pp. 639-648. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(639)