DOI QR코드

DOI QR Code

리히터 규모 7.0의 지진에 대응하는 MPS 면진받침의 필로티 구조물에 대한 내진성능 평가 - 비선형 동적 해석

Seismic Performance Evaluation for Piloti Structures of MPS Seismic Isolation Device in Response to Earthquakes on the Richter Scale 7.0 - Nonlinear Dynamic Analysis

  • 조한민 (인천대학교 건설환경공학과) ;
  • 허종완 (인천대학교 도시환경공학부)
  • 투고 : 2020.09.20
  • 심사 : 2020.10.26
  • 발행 : 2021.02.01

초록

최근 우리나라는 주거 및 주차 공간의 확보를 위해 다양한 필로티 구조물이 건설되어 왔다. 하지만 이러한 필로티 구조물은 1층에 주차 공간을 확보하기 위해 벽체가 없는 돌출된 기둥의 형태로 건설되어 왔다. 이러한 형태는 지진 발생 시 일반적인 구조물에 비해 상대적으로 기둥의 파손이 쉽게 발생하며, 이러한 파손은 구조물의 붕괴로 이어질 수 있다. 따라서 본 연구에서는 MPS (Multi Performance System) 면진받침을 활용한 필로티 구조물의 안전성 확보에 대한 연구를 수행하였다. 기존에 건설되어 있는 필로티 구조물에 대해 MPS 면진받침 설치 유무에 따른 비선형 동적 해석을 수행하고 해석결과를 비교 및 분석하였다. 최종적으로 각각의 내진성능 평가를 수행하고 MPS 면진받침의 성능을 검증하였다.

Recently, various piloti structures have been constructed in Korea to secure residential and parking spaces. However, these piloti structures have been constructed in the form of protruding columns without walls to secure parking spaces on the first floor. In this form, when an earthquake occurs, the column is relatively easily damaged compared to general structures, and such damage can lead to the collapse of the structure. Therefore, in this study, a study on securing the safety of the piloti structure using the MPS (Multi Performance System) seismic isolation device was conducted. Nonlinear dynamic analysis according to the presence or absence of MPS seismic isolation device was performed on the existing piloti structure, and analysis results were compared and analyzed. Finally, each seismic performance evaluation was performed and the superiority of the MPS seismic isolation device was verified.

키워드

참고문헌

  1. American Society of Civil Engineers (2005). Seismic design Criteria for structures, systems, and components in nuclear facilities, ASCE/SEI, Virginia, USA.
  2. Biswas, S. K. and Vijayan, K. (1992). "Friction and wear of PTFE - a review." An International Journal on the Science and Technology of Friction, Lubrication and Wear, Vol. 158, No. 1, pp. 193-211.
  3. Chopra, A. K. (1995). Dynamics of structures: Theory and applications to earthquake engineering, Prentice Hall, New Jersey, USA.
  4. Fujiwaka, T. (2004). "study on three-dimensional seismic isolation system for next-generation nuclear power plant." Hydraulic Three-Dimensional Base Isolation System. 13th World Conference on Earthquake Engineering, paper No.788, Vancouver, British Columbia, Canada.
  5. Hu, J. W. (2015). "Seismic behavior and estimation for base isolator bearings with self-centering and reinforcing systems." Journal of The Korean Society of Civil Engineers, KSCE, Vol. 35, No. 5, pp. 1025-1037 (in Korean). https://doi.org/10.12652/Ksce.2015.35.5.1025
  6. Hu, J. W. (2016). "Seismic analysis and parametric study of SDOF lead-rubber bearing (LRB) isolation systems with recentering shape memory alloy (SMA) bending bar." Journal of Mechanical Science and Technology, KSME, Vol. 30, No. 7, pp. 2987-2999. https://doi.org/10.1007/s12206-016-0608-5
  7. Kaloop, M. R. and Hu, J. W. (2017). "Seismic response prediction of buildings with base isolation using advanced soft computing approaches." Advances in Materials Science and Engineering, Vol. 2017, pp. 1-12. https://doi.org/10.1155/2017/7942782
  8. Kim, D. K., Dargush, G. F. and Hu, J. W. (2013). "Cyclic damage model for E-shaped dampers in the seismic isolation system." Journal of Mechanical Science and Technoloogy, KSME, Vol. 27, pp. 2275-2281. https://doi.org/10.1007/s12206-013-0610-0
  9. MIDAS IT (2020). Analysis reference, Civil 2020 design of civil structure (in Korean).
  10. Ogiso, S., Nakamura, K. and Moro S. (2003). "Development of 3D seismic isolator using metallic bellows." Tramsactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17), paper #K09-3, Prague, Czech Republic.
  11. Treloar, L. R., Hopkins, H. G., Rivlin, R. S. and Ball, J. M. (1975). "The mechanics of rubber elasticity [and discussions]", Proceeding of the Royal Society of London, Series A, Mathematical and physical sciences, Vol. 351, No. 1666, pp. 301-330.
  12. United States Atomic Energy Commission (2014). U.S. NRC Regulatory guide 1.60, Design response spectrum for seismic design of nuclear power plants, Washington, D.C., USA.