DOI QR코드

DOI QR Code

The Effect of Slip on the Convective Instability Characteristics of the Stagnation Point Flow Over a Rough Rotating Disk

  • Mukherjee, Dip (Department of Mathematics, National Institute of Technology Rourkela) ;
  • Sahoo, Bikash (Department of Mathematics, National Institute of Technology Rourkela)
  • Received : 2020.04.22
  • Accepted : 2020.11.30
  • Published : 2021.12.31

Abstract

In this paper we look at the three dimensional stagnation point flow problem over a rough rotating disk. We study the theoretical behaviour of the stagnation point flow, or forced flow, in the presence of a slip factor in which convective instability stationary modes appear. We make a numerical investigation of the effects of slip on the behaviour of the flow components of the stagnation point flow where the disk is rough. We provide, for the first time in the literature, a complete convective instability analysis and an energy analysis. Suitable similarity transformations are used to reduce the Navier-Stokes equations and the continuity equation into a system of highly non-linear coupled ordinary differential equations, and these are solved numerically subject to suitable boundary conditions using the bvp4c function of MATLAB. The convective instability analysis and the energy analysis are performed using the Chebyshev spectral method in order to obtain the neutral curves and the energy bars. We observe that the roughness of the disk has a destabilising effect on both Type-I and Type-II instability modes. The results obtained will be prominently treated as benchmarks for our future studies on stagnation flow.

Keywords

Acknowledgement

The first author would like to thank the second author for his guidance and support, and the institute for financial support.

References

  1. B. Alveroglu, A. Segalini, S. J. Garrett, The effect of surface roughness on the convective instability of the bek family of boundary-layer flows, Eur. J. Mech. B Fluids, 56(2016), 178-187. https://doi.org/10.1016/j.euromechflu.2015.11.013
  2. A. Cooper, J. Harris, S. J. Garrett,M. Ozkan, P. Thomas, The effect of anisotropic and isotropic roughness on the convective stability of the rotating disk boundary layer, Phys. Fluids, 27(2015), 014107. https://doi.org/10.1063/1.4906091
  3. A. Cooper, P. W. Carpenter, The stability of rotating-disc boundary-layer flow over a compliant wall. part 1. type I and II instabilities, J. Fluid Mech., 350(1997), 231-259. https://doi.org/10.1017/S0022112097006976
  4. N. Freidoonimehr, M. M. Rashidi, S. Mahmud, F. Nazari, Slip effects on MHD stagnation point-flow and heat transfer over a porous rotating disk, Phys. Sci. Int. Jr., 5(1)(2015), 34-50. https://doi.org/10.9734/PSIJ/2015/13222
  5. L. H. Gustavsson, Initial-value problem for boundary layer flows, Phys. Fluids, 22(1979), 1602-1605. https://doi.org/10.1063/1.862819
  6. K. Hiemenz, Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J. 326(1911), 321-324.
  7. F. Homann, Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel, ZAMM-J. Appl. Math. Mech., 16(3)(1936), 153-164. https://doi.org/10.1002/zamm.19360160304
  8. D. M. Hannah, Forced flow against a rotating disk, Rep. Mem. Aerosp. Res. Coun. Lond. 2772(1947).
  9. B. Hahn, D. Valentine, Essential MATLAB for engineers and scientists, Academic Press(2016).
  10. Th. von Karman, Uber laminare und turbulente reibung, Z. Angew. Math. Mech., 1(1921), 233-252. https://doi.org/10.1002/zamm.19210010401
  11. R. Lingwood, S. Garrett, The effects of surface mass flux on the instability of the bek system of rotating boundary-layer flows, Eur. J. Mech. B Fluids, 30(2011), 299-310. https://doi.org/10.1016/j.euromechflu.2011.02.003
  12. M. Miklavacic, C. Y. Wang The flow due to a rough rotating disk, Zeitschrift fur angewandte Mathematik und Physik ZAMP, 55(2004), 235-246.
  13. M. Renksizbulut, H. Niazmand, G. Tercan, Slip-flow and heat transfer in rectangular microchannels with constant wall temperature, International Journal of Thermal Sciences, 45(2006), 870-881. https://doi.org/10.1016/j.ijthermalsci.2005.12.008
  14. B. Sahoo, Effects of partial slip, viscous dissipation and Joule heating on Von Karman flow and heat transfer of an electrically conducting non-Newtonian fluid, Communications in Nonlinear Science and Numerical Simulation, 14(2009), 2982-2998. https://doi.org/10.1016/j.cnsns.2008.10.021
  15. H. Schlichting, Boundary-layer Theory, McGraw-Hill, 1979.
  16. C. Y. Wang, Flow due to a stretching boundary with partial slip - an exact solution of the Navier-Stokes equations, Chem. Eng. Sci., 57(2002), 3745-3747. https://doi.org/10.1016/S0009-2509(02)00267-1
  17. C. Y. Wang, Stagnation flow on the surface of a quiescent fluid - An exact solution of the Navier-Stokes equations, Q. Appl. Math., 43(2)(1985), 215-223. https://doi.org/10.1090/qam/793530
  18. A. Zebib, A Chebyshev method for the solution of boundary value problems, J. Comput. Phys., 53(1984), 443-455. https://doi.org/10.1016/0021-9991(84)90070-6