DOI QR코드

DOI QR Code

임계 다위상 분해기법이 적용된 SAP 알고리즘을 위한 최적 가변 스텝사이즈

Optimal Variable Step Size for Simplified SAP Algorithm with Critical Polyphase Decomposition

  • Heo, Gyeongyong (Department of Computer Engineering, Dong-Eui University) ;
  • Choi, Hun (Department of Electronic Engineering, Dong-Eui University)
  • 투고 : 2021.08.06
  • 심사 : 2021.09.13
  • 발행 : 2021.11.30

초록

다위상 분해 기법 기반의 부밴드 구조에서 단순화한 부밴드 인접투사 알고리즘(Simplified SAP; SSAP)을 위한 최적 가변 스텝사이즈 조정 방법을 제안한다. 제안한 방법은 부밴드 적응필터의 계수 갱신 시점에서 평균자승편차(MSD)를 최소화하도록 유도된 최적값을 제시한다. 유색 입력 신호를 사용하는 SSAP 알고리즘에서 제안한 최적 스텝사이즈의 적용은 빠른 수렴속도와 작은 정상상태오차를 보장한다. AR(2) 신호와 실제 음성을 입력 신호로 사용하여 수행한 컴퓨터 모의실험의 결과는 제안한 최적 스텝사이즈의 유효성을 입증한다. 또한 모의실험 결과는 기존 여러 적응 알고리즘과 비교하여 제안한 알고리즘이 더 빠른 수렴속도와 양호한 정상상태오차를 가지고 있음을 보인다.

We propose an optimal variable step size adjustment method for the simplified subband affine projection algorithm (Simplified SAP; SSAP) in a subband structure based on a polyphase decomposition technique. The proposed method provides an optimal step size derived to minimize the mean square deviation(MSD) at the time of updating the coefficients of the subband adaptive filter. Application of the proposed optimal step size in the SSAP algorithm using colored input signals ensures fast convergence speed and small steady-state error. The results of computer simulations performed using AR(2) signals and real voices as input signals prove the validity of the proposed optimal step size for the SSAP algorithm. Also, the simulation results show that the proposed algorithm has a faster convergence rate and good steady-state error compared to the existing other adaptive algorithms.

키워드

참고문헌

  1. S. Haykin, Adaptive Filter Theory, 4th Ed., NJ:Prentice-Hall, 2002.
  2. L. Shi, H. Zhao, X. Zeng, and Y. Yu, "Variable step-size widely linear complex-valued NLMS algorithm and its performance analysis," Signal Processing, vol. 165, pp. 1-6, Jun. 2019. https://doi.org/10.1016/j.sigpro.2019.06.029
  3. K. Ozeki, "Affine Projection Algorithm. In: Theory of Affine Projection Algorithms for Adaptive Filtering," Mathematics for Industry, Tokyo: Springer, vol. 22, 2016.
  4. S. S. Pradhan and V. U. Reddy, "A new approach to subband adaptive filtering," IEEE Transaction. on Signal Processing, vol. 45, no. 3, pp. 655-664, Mar. 1999.
  5. K. A. Lee, W. S. Gan, and S. M. Kuo, Subband Adaptive Filtering: Theory and Implementation, Hoboken, NJ: Wiley, 2009.
  6. H. Choi and H. D. Bae, "Subband Affine Projection Algorithm for Acoustic Echo Cancellation System," EURASIP Journal on Applied Signal Processing, vol. 2007, pp. 1-11, Dec. 2006.
  7. H. Choi and H. D. Bae, "Convergence Behavior Analysis of The Maximally Polyphase Decomposed SAP Adaptive Filter," Journal of the Institute of Electronics Engineers of Korea, vol. 49, no. 6, pp. 163-174, Jun. 2009.
  8. P. Wen and J. Zhang, "A novel variable step-size normalized subband adaptive filter based on mixed error cost function," Signal Processing, vol. 138, pp. 48-52, Sep. 2017. https://doi.org/10.1016/j.sigpro.2017.01.023
  9. N, J. Bershad and J. C. M. Bermudez, "A switched variable step size NLMS adaptive filter," Digital Signal Processing, vol. 101, Jun. 2020.
  10. L. Shi, H. Zhao, and Y. Zakharov, "Generalized variable step size continuous mixed p-norm adaptive filtering algorithm," IEEE Transaction on Circuits and Systems II Exppress Briefs, vol. 66, no. 6, pp. 1078-1082, Jun. 2019. https://doi.org/10.1109/TCSII.2018.2873254
  11. T. Park, M. Lee, and P. Park, "Scheduled-Stepsize Subband Adaptive Filter algorithm with Implemental Consideration," IEEE Access, vol. 8, pp. 199025-199033, Oct. 2020. https://doi.org/10.1109/access.2020.3034694
  12. L. Shi and H. Zhao, "A Normalized Subband Adaptive Filter with Combined Regularization Parameter," IFAC-PapersOnLine, vol. 52, no. 24, pp. 158-162, Dec. 2019. https://doi.org/10.1016/j.ifacol.2019.12.399
  13. J. Lasserre, "A trace inequality for matrix product," IEEE Transaction on Automatic Control, vol. 40, no. 8, pp. 1500-1501, Aug. 1995. https://doi.org/10.1109/9.402252