Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2021R1I1A304651111)
References
- S. K. Kim, J. Lund, M. Kiraly, K. Duke, M. Jiang, J. M. Stuart, A. Eizinger, B. N. Wylie, and G. S. Davidson, "A gene expression map for Caenorhabditis elegans," Science, vol. 293, no. 5537, pp. 2087-2092, Sep. 2001. https://doi.org/10.1126/science.1061603
- M. N. Arbeitman, E. E. Furlong, F. Imam, E. Johnson, B. H. Null, B. S. Baker, M. A. Krasnow, Ma. P. Scott, R. W. Davis, and K. P. White, "Gene expression during the life cycle of Drosophila melanogaster," Science, vol. 297, no. 5590, pp. 2270-2275, Sep. 2002.
- F. Emmert-Streib, M. Dehmer, and B. Haibe-Kains, "Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks," Front. Cell Dev. Biol., vol. 2, no. 38, Aug. 2014.
- A. E. Saliba, A. J. Westermann, S. A. Gorski, and J. Vogel, "Single-cell RNAseq: advances and future challenges," Nucleic Acids Res., vol. 42, no. 14, pp. 8845-8860, Aug. 2014. https://doi.org/10.1093/nar/gku555
- C. W. Shields, C. D. Reyes, and G. P. Lopez, "Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation," Lab Chip, vol. 15, no. 5, pp. 1230-1249, Mar. 2015. https://doi.org/10.1039/C4LC01246A
- J. Tanevski, T. Nguyen, B. Truong, N. Karaiskos, M. Er. Ahsen, X. Zhang, C. Shu, K. Xu, X. Liang, Y. Hu, H. V. V. Pham, L. Xiaomei, T. D. Le, A. L. Tarca, G. Bhatti, R. Romero, N. Karathanasis, P. L.oher, Y. Chen, Z. Ouyang, D. Mao, Y. Zhang, M. Zand, J. Ruan, C. Hafemeister, P. Qiu, D. Tran, T. Nguyen, A. Gabor, T. Yu, E. Glaab, R. Krause, P. Banda, DREAM SCTC Consortium, G. Stolovitzky, N. Rajewsky, J. Saez-Rodriguez, and P. Meyer, "Predicting cellular position in the Drosophila embryo from single-cell transcriptomics data," bioRxiv, 2019. doi: doi.org/10.1101/796029.
- T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P. Way, E. Ferrero, P. M. Agapow, M. Zietz, M. M. Hoffman, W. Xie, G. L. Rosen, B. J. Lengerich, J. Israeli, J. Lanchantin, S. Woloszynek, A. E. Carpenter, A. Shrikumar, Ji. Xu, E. M. Cofer, C. A. Lavender, S. C. Turaga, A. M. Alexandari, Z. Lu, D. J. Harris, D. DeCaprio, Y. Qi, A. Kundaje, Y. Peng, L. K. Wiley, M. H. S. Segler, S. M. Boca, S. J. Swamidass, A. Huang, A. Gitter, and C. S. Greene, "Opportunities and obstacles for deep learning in biology and medicine," J. R. Soc. Interface, vol. 15, no. 141, Apr. 2018.
- J. Ding, A. Condon, and S. P. Shah, "Interpretable dimensionality reduction of single cell transcriptome data with deep generative models," Nat Commun., vol. 9, no. 2002, May. 2018.
- G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis, "Single-cell RNA-seq denoising using a deep count autoencoder," Nat Commun., vol. 10, no. 390, Jan. 2019.
- T. Wang, T. S. Johnson, W. Shao, Z. Lu, B. R. Helm, J. Zhang, and K. Huang, "BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes," Genome Biol., vol. 20, no. 165, Aug. 2019.
- M. Amodio, D. Dijk, K. Srinivasan, W. S. Chen, H. Mohsen, K. R. Moon, A. Campbell, Y. Zhao, X. Wang, M. Venkataswamy, A. Desai, V. Ravi, P. Kumar, R. Montgomery, G. Wolf, and S. Krishnaswamy, "Exploring single-cell data with deep multitasking neural networks," Nat. Methods, vol. 16, pp. 1139-1145, Oct. 2019. https://doi.org/10.1038/s41592-019-0576-7
- L. Xiong, K. Xu, K. Tian, Y. Shao, L. Tang, G. Gao, M. Zhang, T. Jiang, and Q. C. Zhang, "SCALE method for single-cell ATAC-seq analysis via latent feature extraction," Nat Commun., vol. 10, no. 4576, Oct. 2019.
- B. Wang, J. Zhu, E. Pierson, D. Ramazzotti and S. Batzoglou, "Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning," Nat. Methods, vol. 14, pp. 414-416, Mar. 2017. https://doi.org/10.1038/nmeth.4207
- S. Park and H. Zhao, "Spectral clustering based on learning similarity matrix," Bioinformatics, vol. 34, no. 12, pp. 2069-2076, Feb. 2018. https://doi.org/10.1093/bioinformatics/bty050
- T. Tian, J. Wan, Q. Song, and Z. Wei, "Clustering single-cell RNA-seq data with a model-based deep learning approach," Nature Mach. Intell., vol. 1, pp. 191-198, Apr. 2019. https://doi.org/10.1038/s42256-019-0037-0
- Y. Wu, Y. Guo, Y. Xiao, and S. Lao, "AAE-SC: A scRNA-Seq Clustering Framework Based on Adversarial Autoencoder," IEEE Access, vol. 8, pp. 178962-178975, Sep. 2020. https://doi.org/10.1109/access.2020.3027481
- G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis, "Single-cell RNA-seq denoising using a deep count autoencoder," Nat. Commun., vol. 10, no. 390, Jan. 2019.
- J. Ding, A. Condon, and S. P. Shah, "Interpretable dimensionality reduction of single cell transcriptome data with deep generative models," Nat. Commun., vol. 9, no. 2002, May. 2018.
- C. Doersch, "Tutorial on Variational Autoencoders," arXiv:1606.05908v3, 2021.
- D. P. Kingma and M. Welling, "An Introduction to Variational Autoencoders," Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307-392, Nov. 2019. https://doi.org/10.1561/2200000056
- F. Pedregosa, G. Varoquaux, A. GRamfort, V. Miche, and B. Thirion, "Scikit-learn: Machine Learning in Python," JMLR, vol. 12, pp. 2825-2830, 2011.
- B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science, vol. 315, no. 5814, pp. 972-976, Feb. 2007. https://doi.org/10.1126/science.1136800
- U. Luxburg, "A Tutorial on Spectral Clustering," Statistics and Computing, vol. 17, pp. 395-416, 2007. https://doi.org/10.1007/s11222-007-9033-z
- G. X. Y. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B. Ziraldo, T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gregory, J. Shuga, L. Montesclaros, J. G. Underwood, D. A. Masquelier, S. Y. Nishimura, M. Schnall-Levin, P. W. Wyatt, C. M. Hindson, R. Bharadwaj, A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, C.r McFarland, K. R. Loeb, W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen, B. J. Hindson, and J. H. Bielas, "Massively parallel digital transcriptional profiling of single cells," Nat. Commun., vol. 8, no. 14049, Jan. 2017.
- D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," ICLR (Poster), 2015.
- E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, "DBSCAN revisited, revisited: why and how you should (still) use DBSCAN," ACM Transactions on Database Systems, vol. 42, no. 3, pp. 1-22, 2017.
- E. Schubert and M. Gertz, "Improving the Cluster Structure Extracted from OPTICS Plots," Proc. of the Conference LWDA, pp. 318-329. 2018.