DOI QR코드

DOI QR Code

WiFi CSI Data Preprocessing and Augmentation Techniques in Indoor People Counting using Deep Learning

딥러닝을 활용한 실내 사람 수 추정을 위한 WiFi CSI 데이터 전처리와 증강 기법

  • Kim, Yeon-Ju (Department of Electronics Engineering, Chungbuk National University) ;
  • Kim, Seungku (Department of Electronics Engineering, Chungbuk National University)
  • Received : 2021.09.17
  • Accepted : 2021.10.12
  • Published : 2021.12.31

Abstract

People counting is an important technology to provide application services such as smart home, smart building, smart car, etc. Due to the social distancing of COVID-19, the people counting technology attracted public attention. People counting system can be implemented in various ways such as camera, sensor, wireless, etc. according to service requirements. People counting system using WiFi AP uses WiFi CSI data that reflects multipath information. This technology is an effective solution implementing indoor with low cost. The conventional WiFi CSI-based people counting technologies have low accuracy that obstructs the high quality service. This paper proposes a deep learning people counting system based on WiFi CSI data. Data preprocessing using auto-encoder, data augmentation that transform WiFi CSI data, and a proposed deep learning model improve the accuracy of people counting. In the experimental result, the proposed approach shows 89.29% accuracy in 6 subjects.

사람 수 추정은 스마트 홈, 스마트 빌딩, 스마트 자동차 등과 같은 응용 서비스를 제공하기 위해 중요한 기술이다. 최근 COVID-19의 영향으로 사회적 거리두기가 시행되면서 사람 수 추정 기술은 새롭게 주목받고 있다. 사람 수 추정 시스템은 서비스 요구사항에 따라 카메라, 센서, 무선 등과 같은 다양한 방법으로 구현 가능하다. WiFi AP를 활용한 사람 수 추정 방식은 다중경로 정보를 반영하는 WiFi CSI를 활용하는 기술로 낮은 비용으로 실내에서 사용하기에 효과적이다. 기존에 제안된 WiFi CSI 기반 사람 수 추정 시스템은 정확도가 낮아 고품질 서비스를 제공하기 어렵다. 본 논문은 WiFi CSI 데이터에 기반한 딥러닝 사람 수 추정 시스템을 제안한다. 오토인코더를 활용한 데이터 전처리 방식, WiFi CSI 데이터를 변형하는 데이터 증강 기법, 그리고 딥러닝 모델링을 통해 추정 정확도를 높인다. 실험 결과 제안하는 시스템은 최대 6명에 대해 89.29%의 정확도를 보였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2019R1F1A1061970).

References

  1. C. Kim and S. Choi, "A Camera-Based System for Counting People in Real Time," Korea Institute of Communication Sciences, vol. 2002, no. 66, pp. 503-506, 2002.
  2. S. Jang and D. Jung, "Design of a People Counting System using Piezoelectric Sensors," The Korea Institute of Information and Communication Engineering, vol. 9, no. 1, pp. 149-152, 2017.
  3. S. Depatla, A. Muralidharan, and Y. Mostofi, "Occupancy estimation using only wifi power measurements," IEEE Journal on Selected Areas in Communications, vol. 33, no. 7, pp. 1381-1393, July. 2015. https://doi.org/10.1109/JSAC.2015.2430272
  4. Y. Yuan, J. Zhao, C. Qiu, and W. Xi, "Estimating crowd density in an rf-based dynamic environment," IEEE Sensors Journal, vol. 13, no. 10, pp. 3837-3845, Oct. 2013. https://doi.org/10.1109/JSEN.2013.2259692
  5. Z. Yang, Z. Zhou, and Y. Liu, "From RSSI to CSI: Indoor localization via channel response," ACM Computing Surveys, vol. 46, no. 2, pp. 1-32, Nov. 2013.
  6. S. D. Domenicon, M. D. Sanctis, and E. Cianca, "A trained-once crowd counting method using differential wifi channel state information," in Proceedings of the 3rd International on Workshop on Physical Analytics, pp. 37-42, June. 2016.
  7. H. An and S. Kim, "A Deep Learning Based Device-free Indoor People Counting Using CSI," The Korea Institute of Information and Commucation Engineering, vol. 24, no. 7, pp. 935-941, Jul. 2020.
  8. H. Mo and S. Kim, "A Deep Learning-Based Human Identification System With Wi-Fi CSI Data Augmentation," in IEEE Access, vol. 9, pp. 91913-91920, 2021. https://doi.org/10.1109/ACCESS.2021.3092435
  9. J. Lv, W. Yang, and D. Man, "Device-free passive identity identification via WiFi signals," Sensors, vol. 17, no. 11, pp. 2520-2536, 2017. https://doi.org/10.3390/s17112520
  10. Y. Yoo, J. Suh, Y. Lee, S. Kang, B. Kim, and S. Bahk, "Privacy-preserving People Counting with Channel State Information," in 2020 International Conference on Information and Communication Technology Convergence (ICTC), IEEE, pp. 753-755, 2020.
  11. A. Krizhevsky, I. Sutskever, and G. E. Hinton. "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, pp. 1097-1105, 2012.
  12. T. T. Um, F. M. J. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche, U. Fietzek, and D. Kulic, "Data Augmentation of Wearable Sensor Data for Parkinson's Disease Monitoring using Convolutional Neural Network," in Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 216-200, 2017.