Honam Mathematical J. 43 (2021), No. 4, pp. 741–749 https://doi.org/10.5831/HMJ.2021.43.4.741

NUMBER OF LINEAR EXTENSIONS FOR A VARIANT OF UP-DOWN POSET

Hyeong-Kwan Ju* and Kyu-Chul Shim

Abstract. A variant of up-down posets described below and the number of their linear extensions were studied. We obtained the exponential generating functions which showed that how they are related to the Euler's up-down numbers.

1. Introduction

We consider the following poset:

 $\begin{array}{l} A_{m,n} := \left\{ \sigma_1 < \sigma_2 < \cdots < \sigma_{m-1} < \sigma_m < \tau_1 < \tau_2 > \tau_3 < \tau_4 > \cdots < (\mbox{ or } >)\tau_n \right\}, \\ \mbox{where } [n+m] = \left\{ \sigma_i \right\}_{i=1}^m \cup \left\{ \tau_j \right\}_{j=1}^n. \mbox{ In other words, the orders between } \tau_i's \\ \mbox{in } A_{m,n} \mbox{ change alternatively. Let } c(m,n) \mbox{ be the number of linear extensions } \\ \mbox{of the poset } A_{m,n}. \mbox{ It is known that } c(0,n) = E_n, \mbox{ Euler's updown number.} \\ 1,1,1,2,5,16,61,272,1385 \mbox{ are the first few terms.} \mbox{ (See [4] OEIS id A000111 } \\ \mbox{about this.) Our goal here is to represent the number of linear extensions of } \\ A_{m,n} \mbox{ using Euler's up-down numbers.} \end{array}$

Let
$$F_m(y) := \sum_{n \ge 0} c(m, n) \frac{y^n}{n!}$$
. From the definition of $F_m(y)$, we obtain
 $F_0(y) = \sum_{k=0}^{\infty} E_{2k} \frac{y^{2k}}{(2k)!} + \sum_{k=0}^{\infty} E_{2k+1} \frac{y^{2k+1}}{(2k+1)!} = \sec y + \tan y.$

(See [2] for the zigzag poset.)

One way to get the formula $F_1(y)$ is as follows: Note that

$$A_{0,n+1} = \{\tau_1 < \tau_2 > \tau_3 < \tau_4 > \dots < (\text{ or } >)\tau_{n+1}\}.$$

Consider another poset

$$B_{n+1} := \{ \tau_0 > \tau_1 < \tau_2 > \tau_3 < \tau_4 > \dots > (\text{ or } <) \tau_n \}$$

The number of linear extensions of the poset $A_{0,n+1}$ (which is E_{n+1}) is same as that of the poset B_{n+1} because there is an obvious bijection between them.

Received October 24, 2021. Revised October 27, 2021. Accepted October 30, 2021.

²⁰²⁰ Mathematics Subject Classification. 05A15, 05C30.

Key words and phrases. linear extensions, generating functions.

^{*}Corresponding author

Since the sum of the number of linear extensions of B_{n+1} and that of $A_{1,n}$ is $(n+1)E_n$, we have the formula $c(1,n) = (n+1)E_n - E_{n+1}$ for $n \ge 1$. Thus

$$F_1(y) = \sum_{n \ge 0} c(1, n) \frac{y^n}{n!}$$

= $1 + \sum_{n \ge 1} ((n+1)E_n - E_{n+1}) \frac{y^n}{n!}$
= $1 + \sum_{n \ge 1} (nE_n) \frac{y^n}{n!} + \sum_{n \ge 1} E_n \frac{y^n}{n!} - \sum_{n \ge 1} E_{n+1} \frac{y^n}{n!}.$

Since

$$\sum_{n\geq 1} (nE_n) \frac{y^n}{n!} = y \sum_{n\geq 1} E_n \frac{y^{n-1}}{(n-1)!} = y \frac{d}{dy} \sum_{n\geq 1} E_n \frac{y^n}{n!} = y(\sec^2 y + \sec y \tan y),$$
$$\sum_{n\geq 1} E_n \frac{y^n}{n!} = \sec y + \tan y - 1,$$
$$\sum_{n\geq 1} E_{n+1} \frac{y^n}{n!} = \frac{d}{dy} \sum_{n\geq 1} E_{n+1} \frac{y^{n+1}}{n+1!}$$
$$= \frac{d}{dy} (\sec y + \tan y - 1 - y)$$
$$= \sec^2 y + \sec y \tan y - 1,$$

we get

$$F_1(y) = 1 + (1 + (y - 1) \sec y)(\sec y + \tan y).$$

First few terms of c(1, n) are listed as follows:

$$1, 1, 1, 3, 9, 35, 155, 791, 4529, 28839, \ldots$$

(See [4] with id A034428. Note that c(1,0) = 1. There is certain relation with the sequences appeared in [1] and [3].)

Another way to get the same formula for $F_1(y)$ is as follows: Let

$$F_m^o(y) = (F_m(y) - F_m(-y))/2,$$

$$F_m^e(y) = (F_m(y) + F_m(-y))/2.$$

Theorem 1.1. (m = 1) The following system of differential equations holds:

(1)
$$F_1^o(y) = y + \int_0^y F_1^o(s) \, ds \tan y$$

(2)
$$F_1^e(y) = 1 + \int_0^y F_1^o(s) \, ds \sec y$$

To prove the above theorem, we need the following lemma where a recurrence relation on c(1, 2n + 1) is introduced.

Number of linear extensions for a variant of up-down poset

n	c(n,0)	c(n,1)	c(n,2)	c(n,3)	c(n,4)	c(n,5)	c(n,6)	c(n,7)	c(n,8)
0	1	1	1	2	5	16	61	272	1385
1	1	1	1	3	9	35	155	791	4529
2	1	1	1	4	14	64	323	1856	11796
3	1	1	1	5	20	105	595	3801	26586
4	1	1	1	6	27	160	1006	7072	53954
5	1	1	1	7	35	231	1596	12243	101178

TABLE 1. c(m, n)-table

Lemma 1.2. The sequence c(1, 2n + 1) satisfies the following recursive formula

$$c(1,2n+1) = \sum_{k=0}^{n-1} {\binom{1+2n}{2k+1}} c(1,2n-2k-1)E_{2k+1}.$$

Proof. Consider the following poset:

$$A_{1,2n+1} := \{ \sigma_1 < \tau_1 < \tau_2 > \tau_3 < \tau_4 > \dots < \tau_{2n} > \tau_{2n+1} \}$$

To construct the linear extensions of the poset $A_{1,2n+1}$ we match each number in [2n + 2] with the element of the given poset so that the correspondence satisfies suitable conditions for cover relations. The largest number 2n + 2 in this correspondence match with one of $\tau_{2(n-k)}$ (where $0 \le k \le n-1$) in the poset $A_{1,2n+1}$ so that the poset is decomposed into two parts. One part is $A_{1,2n-2k-1}$ and the other part is $A_{0,2k+1}$. Thus, first we choose 2k + 1 numbers from [2n+1] for the part $A_{0,2k+1}$. Then we multiply $\binom{1+2n}{2k+1}$ by c(1,2n-2k-1)and $c(0,2k+1) = E_{2k+1}$ to get the desired formula.

Now we provide the proof of Theorem 1.1.

Proof of Theorem 1.1. First we separate odd and even terms of $F_1(y)$ as

$$F_1(y) = \sum_{n \ge 0} c(1,n) \frac{y^n}{n!} = F_1^o(y) + F_1^e(y)$$
$$= \left[y + \sum_{n=1}^{\infty} c(1,2n+1) \frac{y^{2n+1}}{(2n+1)!} \right] + \left[1 + \sum_{n=1}^{\infty} c(1,2n) \frac{y^{2n}}{(2n)!} \right].$$

Hyeong-Kwan Ju and Kyu-Chul Shim

Then, as a result of the above lemma, $F_1^o(y)$ satisfies

$$F_{1}^{o}(y) - y = \sum_{n=1}^{\infty} \left(\sum_{k=0}^{n-1} \binom{1+2n}{2k+1} c(1,2n-2k-1)E_{2k+1} \right) \frac{y^{2n+1}}{(2n+1)!}$$
$$= \sum_{n=1}^{\infty} \left(\sum_{k=0}^{n-1} \frac{(1+2n)!c(1,2n-2k-1)E_{2k+1}}{(1+2n-2k-1)!(2k+1)!} \right) \frac{y^{1+2n}}{(1+2n)!}$$
$$= \sum_{k=0}^{\infty} \sum_{n=k+1}^{\infty} \left(\frac{c(1,2n-2k-1)}{(2n-2k)!} y^{2n-2k} \right) \left(\frac{E_{2k+1}}{(2k+1)!} y^{2k+1} \right)$$
$$= \left(\sum_{l=0}^{\infty} \frac{c(1,2l+1)}{(2l+2)!} y^{2l+2} \right) \left(\sum_{k=0}^{\infty} \frac{E_{2k+1}}{(2k+1)!} y^{2k+1} \right).$$

If we define $\beta_1(y)$ as

$$\beta_1(y) = \sum_{l=0}^{\infty} \frac{c(1,2l+1)}{(2l+2)!} y^{2l+2} = \int_0^y \sum_{l=0}^{\infty} \frac{c(1,2l+1)}{(2l+1)!} s^{2l+1} \, ds = \int_0^y F_1^o(s) \, ds,$$

e get Equation (1). Similarly, we can obtain Equation (2).

we get Equation (1). Similarly, we can obtain Equation (2).

Theorem 1.3 (m = 1). The exponential generating functions for odd terms and even terms of c(1, n) are

$$F_1^o(y) = \tan y + y \sec^2 y - \sec y \tan y,$$

$$F_1^e(y) = 1 + y \sec y \tan y - \sec^2 y + \sec y.$$

Thus, we get

$$F_1(y) = F_1^o(y) + F_1^e(y) = 1 + (1 + (y - 1)\sec y)(\sec y + \tan y).$$

Proof. From Equation (1), we have $\beta'_1(y) - y = \beta_1(y) \tan y$. Multiplying by the integrating factor $\cos y$ on both sides of the previous differential equation, we get

 $\left(\beta_1(y)\cos y\right)' = y\cos y.$

$$\beta_1(y) = \sec(y) \int_0^y s \cos(s) \, ds$$

= $\sec(y) \left(y \sin(y) + \cos(y) - 1\right)$
= $y \tan(y) + 1 - \sec(y).$

Using this, we get

$$F_1^o(y) = \beta_1'(y) = \tan y + y \sec^2 y - \sec y \tan y,$$

$$F_1^e(y) = 1 + \beta_1(y) \sec y = 1 + y \sec y \tan y - \sec^2 y + \sec y.$$

Hence

$$F_1(y) = F_1^o(y) + F_1^e(y) = 1 + (1 + (y - 1)\sec y)(\sec y + \tan y).$$

Now, we consider the case m = 2.

Theorem 1.4 (m = 2). The following system of differential equations holds:

(3)
$$F_2^o(y) = y + \int_0^y F_2^o(s) \, ds \tan y + \int_0^y \int_0^t F_2^o(s) \, ds \, dt \sec^2 y$$

(4)
$$F_2^e(y) = 1 + \int_0^y F_2^o(s) \, ds \sec y + \int_0^y \int_0^t F_2^o(s) 0 \, ds \, dt \sec y \tan y$$

Let
$$\beta_2(y) = \int_0^y \int_0^t F_2^o(s) \, ds \, dt$$
. Then Equation (3) can be rewritten as
 $\beta_2''(y) = y + \beta_2'(y) \tan y + \beta_2(t) \sec^2 y.$

Since this can be written as

$$\left(\beta_{2}'(y) - \frac{y^{2}}{2} - \beta_{2}(y)\tan y\right)' = 0,$$

we get

$$\beta'_{2}(y) - \frac{y^{2}}{2} - \beta_{2}(y) \tan y = c.$$

for some constant c. Since $\beta'_2(0) = 0 = \beta_2(0)$, c must be 0. Similar to what we did before, we get

$$(\beta_2(y)\cos y)' = \beta'_2(y)\cos y - \beta_2(y)\sin y = \frac{y^2}{2}\cos y.$$

Thus we have

$$\beta_2(y)\cos y = \int_0^y \frac{s^2}{2}\cos s \, ds = \left(\frac{y^2}{2} - 1\right)\sin y + y\cos y,$$

which gives

$$\beta_2(y) = \left(\frac{y^2}{2} - 1\right) \tan y + y.$$

Theorem 1.5 (m = 2). The exponential generating functions for odd terms and even terms of c(2, n) are

$$F_2^o(y) = \tan y + 2y \sec^2 y + (y^2 - 2) \sec^2 y \tan y,$$

$$F_2^e(y) = 1 + (2 - y^2/2) \sec y + 2y \sec y \tan y + (y^2 - 2) \sec^3 y.$$

Thus the exponential generating function for c(2, n) is

$$F_2(y) = 1 + (1 - y^2/2)\sec y + (1 + 2y\sec y + (y^2 - 2)\sec^2 y)(\sec y + \tan y).$$

2. Main results

In this chapter we generalize the previous results for m = 1 and 2. The exponential generating function explains the situation that how they are mixed with the Euler's up-down numbers $\{E_n\}_{n\geq 0}$. Now

$$F_m(y) = \sum_{n \ge 0} c(m, n) \frac{y^n}{n!} = F_m^o(y) + F_m^e(y)$$
$$= \left[y + \sum_{n=1}^{\infty} c(m, 2n+1) \frac{y^{2n+1}}{(2n+1)!} \right] + \left[1 + \sum_{n=1}^{\infty} c(m, 2n) \frac{y^{2n}}{(2n)!} \right].$$

Then $F_m^o(y)$ satisfies

$$\begin{split} F_m^o(y) - y &= \sum_{n=1}^{\infty} \left[\sum_{k=0}^{n-1} \binom{m+2n}{2k+1} c(m,2n-2k-1)E_{2k+1} \right] \frac{y^{2n+1}}{(2n+1)!} \\ &= \sum_{n=1}^{\infty} \left[\sum_{k=0}^{n-1} \frac{(m+2n)!c(m,2n-2k-1)E_{2k+1}}{(m+2n-2k-1)!(2k+1)!} \right] \left(\frac{y^{m+2n}}{(m+2n)!} \right)^{(m-1)} \\ &= \left[\sum_{k=0}^{\infty} \sum_{n=k+1}^{\infty} \left(\frac{c(m,2n-2k-1)}{(m+2n-2k-1)!} y^{m+2n-2k-1} \right) \left(\frac{E_{2k+1}}{(2k+1)!} y^{2k+1} \right) \right]^{(m-1)} \\ &= \left[\left(\sum_{l=0}^{\infty} \frac{c(m,2l+1)}{(m+2l+1)!} y^{m+2l+1} \right) \left(\sum_{k=0}^{\infty} \frac{E_{2k+1}}{(2k+1)!} y^{2k+1} \right) \right]^{(m-1)} \\ &= \left[\beta_m(y)(\tan y) \right]^{(m-1)}, \end{split}$$

where

$$\beta_m(y) = \sum_{l=0}^{\infty} \frac{c(m, 2l+1)}{(m+2l+1)!} y^{m+2l+1}.$$

Note that

$$(\beta_m(y))^{(m)} = F_m^o(y) - y.$$

Similar to Theorem 1.4, we get the general results:

Theorem 2.1. The following system of differential equations holds: (5)

$$F_m^o(y) = y + \binom{m-1}{0} \beta_m^{(m-1)}(y) \tan y + \binom{m-1}{1} \beta_m^{(m-2)}(y) (\tan y)' + \dots + \binom{m-1}{m-1} \beta_m(y) (\tan y)^{(m-1)},$$
(6)

$$F_m^e(y) = 1 + \binom{m-1}{0} \beta_m^{(m-1)}(y) \sec y + \binom{m-1}{1} \beta_m^{(m-2)}(y) (\sec y)' + \dots + \binom{m-1}{m-1} \beta_m(y) (\sec y)^{(m-1)}.$$

From Equation (5), we have

$$\beta_m^{(m)}(y) = \left(\frac{y^m}{m!} + \beta_m(y)\tan y\right)^{(m-1)}$$

which implies that

$$\beta'_m(y) = \beta_m(y) \tan y + \frac{y^m}{m!} + c_0 + c_1 y + c_2 y^2 + \dots + c_{m-1} y^{m-1}$$

Since $\beta_m(0) = \beta'_m(0) = \dots = \beta_m^{(m-1)}(0) = 0$, we get

$$\beta'_m(y) = \beta_m(y) \tan y + \frac{y^m}{m!}.$$

Similar to the previous case, we obtain the solution $\beta_m(y)$ as follows:

(7)
$$\beta_m(y) = \sec y \int_0^y \frac{s^m}{m!} \cos(s) \, ds.$$

Therefore we get the following theorem.

Theorem 2.2. The exponential generating function for c(m, n) is

$$F_m(y) = (1+y) + [\beta_m(y)(\sec y + \tan y)]^{(m-1)}.$$

Proof. We have

$$F_m(y) = F_m^o(y) + F_m^e(y)$$

= $\left[\frac{y^m}{m!} + \beta_m(y) \tan y\right]^{(m-1)} + \left[\frac{y^{m-1}}{(m-1)!} + \beta_m(y) \sec y\right]^{(m-1)}$
= $(1+y) + \left[\beta_m(y)(\sec y + \tan y)\right]^{(m-1)}$.

Hyeong-Kwan Ju and Kyu-Chul Shim

3. Further Analysis of $\beta_m(y)$

In this section, we provide further analysis of $\beta_m(y)$ and several questions. First, we provide a recurrence relation of $\beta_m(y)$.

Corollary 3.1.

$$\beta_m(y) = \frac{y^m}{m!} \tan(y) + \frac{y^{m-1}}{(m-1)!} - \beta_{m-2}(y).$$

Proof. From Equation (7),

$$\beta_m(y)\cos(y) = \int_0^y \frac{s^m}{m!}\cos(s)\,ds$$

= $\left[\frac{s^m}{m!}\sin(s)\right]_{s=0}^y - \int_0^y \frac{s^{m-1}}{(m-1)!}\sin(s)\,ds$
= $\frac{y^m}{m!}\sin(y) + \frac{y^{m-1}}{(n-1)!}\cos(y) - \beta_{m-2}(y)\cos(y).$

The next result provides the ordinary generating function of $\beta_m(y)$.

Corollary 3.2. Let
$$B(x, y) := \sum_{m \ge 0} \beta_m(y) x^m$$
. Then
 $B(x, y) = \frac{1}{1 + x^2} \left[e^{xy} (x + \tan(y)) - x \sec(y) \right].$

Proof. From Equation (7),

$$B(x,y) := \sum_{m \ge 0} \beta_m(y) x^m$$

= $\operatorname{sec}(y) \int_0^y \sum_{m \ge 0} \frac{(sx)^m}{m!} \cos(s) \, ds$
= $\operatorname{sec}(y) \int_0^y \exp(sx) \cos(s) \, ds$
= $\frac{e^{xy}(x\cos(y) + \sin y) - x}{(1 + x^2)\cos(y)}$
= $\frac{e^{xy}(x + \tan(y)) - x \sec(y)}{1 + x^2}$.

We close this section with a couple of questions and a problem.

Question 3.3. Now, if we let $G(x, y) = \sum_{m \ge 0} F_m(y) \frac{x^m}{m!}$, what is the shape of G(x, y)?

Number of linear extensions for a variant of up-down poset

Question 3.4. If we represent $G(x, y) = \sum_{n=0}^{\infty} H_n(x) \frac{y^n}{n!}$, it is curious what $H_n(x)$ looks like. How will it be tied to $\beta_m(y)$'s?

Problem 3.5. One might consider the order polytope of the poset $A_{m,n}$ and its discrete volume.

References

- Miklós Bóna and István Mező. Limiting probabilities for vertices of a given rank in 1-2 trees. *Electron. J. Combin.*, 26(3):Paper No. 3.41, 19, 2019.
- [2] Jane Ivy Coons and Seth Sullivant. The h*-polynomial of the order polytope of the zig-zag poset. arXiv:1901.07443 [math.CO], 2020.
- [3] Richard Ehrenborg and Swapneel Mahajan. Maximizing the descent statistic. Ann. Comb., 2(2):111–129, 1998.
- [4] Neil J. A. Sloane. The on-line encyclopedia of integer sequences. *Published electrocally at* http://oeis.org, 2020.

Hyeong-Kwan Ju Department of Mathematics, Chonnam National University Gwangju 61186, Republic of Korea E-mail: hkju@jnu.ac.kr

Kyu-Chul Shim Department of Mathematics, Chonnam National University Gwangju 61186, Republic of Korea E-mail: bradsim2000@gmail.com