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NUMBER OF LINEAR EXTENSIONS FOR A VARIANT OF

UP-DOWN POSET

Hyeong-Kwan Ju∗ and Kyu-Chul Shim

Abstract. A variant of up-down posets described below and the number
of their linear extensions were studied. We obtained the exponential gen-

erating functions which showed that how they are related to the Euler’s

up-down numbers.

1. Introduction

We consider the following poset:

Am,n := {σ1 < σ2 < · · · < σm−1 < σm < τ1 < τ2 > τ3 < τ4 > · · ·< ( or >)τn} ,
where [n + m] = {σi}mi=1 ∪ {τj}nj=1. In other words, the orders between τ ′is

in Am,n change alternatively. Let c(m,n) be the number of linear extensions
of the poset Am,n. It is known that c(0, n) = En, Euler’s updown number.
1, 1, 1, 2, 5, 16, 61, 272, 1385 are the first few terms. (See [4] OEIS id A000111
about this.) Our goal here is to represent the number of linear extensions of
Am,n using Euler’s up-down numbers.

Let Fm(y) :=
∑
n≥0

c(m,n)
yn

n!
. From the definition of Fm(y), we obtain

F0(y) =

∞∑
k=0

E2k
y2k

(2k)!
+

∞∑
k=0

E2k+1
y2k+1

(2k + 1)!
= sec y + tan y.

(See [2] for the zigzag poset.)
One way to get the formula F1(y) is as follows: Note that

A0,n+1 = {τ1 < τ2 > τ3 < τ4 > · · · < ( or >)τn+1} .
Consider another poset

Bn+1 := {τ0 > τ1 < τ2 > τ3 < τ4 > · · · > ( or <)τn} .
The number of linear extensions of the poset A0,n+1 (which is En+1) is same
as that of the poset Bn+1 because there is an obvious bijection between them.
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Since the sum of the number of linear extensions of Bn+1 and that of A1,n is
(n+ 1)En, we have the formula c(1, n) = (n+ 1)En − En+1 for n ≥ 1. Thus

F1(y) =
∑
n≥0

c(1, n)
yn

n!

= 1 +
∑
n≥1

((n+ 1)En − En+1)
yn

n!

= 1 +
∑
n≥1

(nEn)
yn

n!
+
∑
n≥1

En
yn

n!
−
∑
n≥1

En+1
yn

n!
.

Since∑
n≥1

(nEn)
yn

n!
= y

∑
n≥1

En
yn−1

(n− 1)!
= y

d

dy

∑
n≥1

En
yn

n!
= y(sec2 y + sec y tan y),

∑
n≥1

En
yn

n!
= sec y + tan y − 1,

∑
n≥1

En+1
yn

n!
=

d

dy

∑
n≥1

En+1
yn+1

n+ 1!

=
d

dy
(sec y + tan y − 1− y)

= sec2 y + sec y tan y − 1,

we get
F1(y) = 1 + (1 + (y − 1) sec y)(sec y + tan y).

First few terms of c(1, n) are listed as follows:

1, 1, 1, 3, 9, 35, 155, 791, 4529, 28839, . . .

(See [4] with id A034428. Note that c(1, 0) = 1. There is certain relation with
the sequences appeared in [1] and [3].)

Another way to get the same formula for F1(y) is as follows: Let

F o
m(y) = (Fm(y)− Fm(−y)) /2,

F e
m(y) = (Fm(y) + Fm(−y)) /2.

Theorem 1.1. (m = 1) The following system of differential equations
holds:

F o
1 (y) = y +

∫ y

0

F o
1 (s) ds tan y(1)

F e
1 (y) = 1 +

∫ y

0

F o
1 (s) ds sec y(2)

To prove the above theorem, we need the following lemma where a recur-
rence relation on c(1, 2n+ 1) is introduced.
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n c(n, 0) c(n, 1) c(n, 2) c(n, 3) c(n, 4) c(n, 5) c(n, 6) c(n, 7) c(n, 8)
0 1 1 1 2 5 16 61 272 1385
1 1 1 1 3 9 35 155 791 4529
2 1 1 1 4 14 64 323 1856 11796
3 1 1 1 5 20 105 595 3801 26586
4 1 1 1 6 27 160 1006 7072 53954
5 1 1 1 7 35 231 1596 12243 101178

Table 1. c(m,n)-table

Lemma 1.2. The sequence c(1, 2n + 1) satisfies the following recursive
formula

c(1, 2n+ 1) =

n−1∑
k=0

(
1 + 2n

2k + 1

)
c(1, 2n− 2k − 1)E2k+1.

Proof. Consider the following poset:

A1,2n+1 := {σ1 < τ1 < τ2 > τ3 < τ4 > · · · < τ2n > τ2n+1}

To construct the linear extensions of the poset A1,2n+1 we match each number
in [2n + 2] with the element of the given poset so that the correspondence
satisfies suitable conditions for cover relations. The largest number 2n + 2 in
this correspondence match with one of τ2(n−k) (where 0 ≤ k ≤ n − 1) in the
poset A1,2n+1 so that the poset is decomposed into two parts. One part is
A1,2n−2k−1 and the other part is A0,2k+1. Thus, first we choose 2k+1 numbers

from [2n+1] for the part A0,2k+1. Then we multiply
(
1+2n
2k+1

)
by c(1, 2n−2k−1)

and c(0, 2k + 1) = E2k+1 to get the desired formula.

Now we provide the proof of Theorem 1.1.

Proof of Theorem 1.1. First we separate odd and even terms of F1(y) as

F1(y) =
∑
n≥0

c(1, n)
yn

n!
= F o

1 (y) + F e
1 (y)

=

[
y +

∞∑
n=1

c(1, 2n+ 1)
y2n+1

(2n+ 1)!

]
+

[
1 +

∞∑
n=1

c(1, 2n)
y2n

(2n)!

]
.
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Then, as a result of the above lemma, F o
1 (y) satisfies

F o
1 (y)− y =

∞∑
n=1

(
n−1∑
k=0

(
1 + 2n

2k + 1

)
c(1, 2n− 2k − 1)E2k+1

)
y2n+1

(2n+ 1)!

=

∞∑
n=1

(
n−1∑
k=0

(1 + 2n)!c(1, 2n− 2k − 1)E2k+1

(1 + 2n− 2k − 1)!(2k + 1)!

)
y1+2n

(1 + 2n)!

=

∞∑
k=0

∞∑
n=k+1

(
c(1, 2n− 2k − 1)

(2n− 2k)!
y2n−2k

)(
E2k+1

(2k + 1)!
y2k+1

)

=

( ∞∑
l=0

c(1, 2l + 1)

(2l + 2)!
y2l+2

)( ∞∑
k=0

E2k+1

(2k + 1)!
y2k+1

)
.

If we define β1(y) as

β1(y) =

∞∑
l=0

c(1, 2l + 1)

(2l + 2)!
y2l+2 =

∫ y

0

∞∑
l=0

c(1, 2l + 1)

(2l + 1)!
s2l+1 ds =

∫ y

0

F o
1 (s) ds,

we get Equation (1). Similarly, we can obtain Equation (2).

Theorem 1.3 (m = 1). The exponential generating functions for odd terms
and even terms of c(1, n) are

F o
1 (y) = tan y + y sec2 y − sec y tan y,

F e
1 (y) = 1 + y sec y tan y − sec2 y + sec y.

Thus, we get

F1(y) = F o
1 (y) + F e

1 (y) = 1 + (1 + (y − 1) sec y)(sec y + tan y).

Proof. From Equation (1), we have β′
1(y)− y = β1(y) tan y. Multiplying by

the integrating factor cos y on both sides of the previous differential equation,
we get

(β1(y) cos y)
′
= y cos y.

Thus

β1(y) = sec(y)

∫ y

0

s cos(s) ds

= sec(y) (y sin(y) + cos(y)− 1)

= y tan(y) + 1− sec(y).

Using this, we get

F o
1 (y) = β′

1(y) = tan y + y sec2 y − sec y tan y,

F e
1 (y) = 1 + β1(y) sec y = 1 + y sec y tan y − sec2 y + sec y.

Hence

F1(y) = F o
1 (y) + F e

1 (y) = 1 + (1 + (y − 1) sec y)(sec y + tan y).
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Now, we consider the case m = 2.

Theorem 1.4 (m = 2). The following system of differential equations
holds:

F o
2 (y) = y +

∫ y

0

F o
2 (s) ds tan y +

∫ y

0

∫ t

0

F o
2 (s) ds dt sec

2 y(3)

F e
2 (y) = 1 +

∫ y

0

F o
2 (s) ds sec y +

∫ y

0

∫ t

0

F o
2 (s)0 ds dt sec y tan y(4)

Let β2(y) =

∫ y

0

∫ t

0

F o
2 (s) ds dt. Then Equation (3) can be rewritten as

β′′
2 (y) = y + β′

2(y) tan y + β2(t) sec
2 y.

Since this can be written as(
β′
2(y)−

y2

2
− β2(y) tan y

)′

= 0,

we get

β′
2(y)−

y2

2
− β2(y) tan y = c.

for some constant c. Since β′
2(0) = 0 = β2(0), c must be 0. Similar to what we

did before, we get

(β2(y) cos y)
′ = β′

2(y) cos y − β2(y) sin y =
y2

2
cos y.

Thus we have

β2(y) cos y =

∫ y

0

s2

2
cos s ds =

(
y2

2
− 1

)
sin y + y cos y,

which gives

β2(y) =

(
y2

2
− 1

)
tan y + y.

Theorem 1.5 (m = 2). The exponential generating functions for odd terms
and even terms of c(2, n) are

F o
2 (y) = tan y + 2y sec2 y + (y2 − 2) sec2 y tan y,

F e
2 (y) = 1 + (2− y2/2) sec y + 2y sec y tan y + (y2 − 2) sec3 y.

Thus the exponential generating function for c(2, n) is

F2(y) = 1 + (1− y2/2) sec y + (1 + 2y sec y + (y2 − 2) sec2 y)(sec y + tan y).
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2. Main results

In this chapter we generalize the previous results for m = 1 and 2. The
exponential generating function explains the situation that how they are mixed
with the Euler’s up-down numbers {En}n≥0. Now

Fm(y) =
∑
n≥0

c(m,n)
yn

n!
= F o

m(y) + F e
m(y)

=

[
y +

∞∑
n=1

c(m, 2n+ 1)
y2n+1

(2n+ 1)!

]
+

[
1 +

∞∑
n=1

c(m, 2n)
y2n

(2n)!

]
.

Then F o
m(y) satisfies

F o
m(y)−y =

∞∑
n=1

[
n−1∑
k=0

(
m+ 2n

2k + 1

)
c(m, 2n− 2k − 1)E2k+1

]
y2n+1

(2n+ 1)!

=

∞∑
n=1

[
n−1∑
k=0

(m+ 2n)!c(m, 2n− 2k − 1)E2k+1

(m+ 2n− 2k − 1)!(2k + 1)!

](
ym+2n

(m+ 2n)!

)(m−1)

=

[ ∞∑
k=0

∞∑
n=k+1

(
c(m, 2n−2k−1)

(m+2n−2k−1)!
ym+2n−2k−1

)(
E2k+1

(2k + 1)!
y2k+1

)](m−1)

=

[( ∞∑
l=0

c(m, 2l + 1)

(m+ 2l + 1)!
ym+2l+1

)( ∞∑
k=0

E2k+1

(2k + 1)!
y2k+1

)](m−1)

= [βm(y)(tan y)]
(m−1)

,

where

βm(y) =

∞∑
l=0

c(m, 2l + 1)

(m+ 2l + 1)!
ym+2l+1.

Note that

(βm(y))(m) = F o
m(y)− y.

Similar to Theorem 1.4, we get the general results:
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Theorem 2.1. The following system of differential equations holds:

F o
m(y) = y +

(
m− 1

0

)
β(m−1)
m (y) tan y +

(
m− 1

1

)
β(m−2)
m (y)(tan y)′

(5)

+ · · ·+
(
m− 1

m− 1

)
βm(y)(tan y)(m−1),

F e
m(y) = 1 +

(
m− 1

0

)
β(m−1)
m (y) sec y +

(
m− 1

1

)
β(m−2)
m (y)(sec y)′

(6)

+ · · ·+
(
m− 1

m− 1

)
βm(y)(sec y)(m−1).

From Equation (5), we have

β(m)
m (y) =

(
ym

m!
+ βm(y) tan y

)(m−1)

which implies that

β′
m(y) = βm(y) tan y +

ym

m!
+ c0 + c1y + c2y

2 + · · ·+ cm−1y
m−1.

Since βm(0) = β′
m(0) = · · · = β

(m−1)
m (0) = 0, we get

β′
m(y) = βm(y) tan y +

ym

m!
.

Similar to the previous case, we obtain the solution βm(y) as follows:

(7) βm(y) = sec y

∫ y

0

sm

m!
cos(s) ds.

Therefore we get the following theorem.

Theorem 2.2. The exponential generating function for c(m,n) is

Fm(y) = (1 + y) + [βm(y)(sec y + tan y)]
(m−1)

.

Proof. We have

Fm(y) = F o
m(y) + F e

m(y)

=

[
ym

m!
+ βm(y) tan y

](m−1)

+

[
ym−1

(m− 1)!
+ βm(y) sec y

](m−1)

= (1 + y) + [βm(y)(sec y + tan y)]
(m−1)

.
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3. Further Analysis of βm(y)

In this section, we provide further analysis of βm(y) and several questions.
First, we provide a recurrence relation of βm(y).

Corollary 3.1.

βm(y) =
ym

m!
tan(y) +

ym−1

(m− 1)!
− βm−2(y).

Proof. From Equation (7),

βm(y) cos(y) =

∫ y

0

sm

m!
cos(s) ds

=

[
sm

m!
sin(s)

]y
s=0

−
∫ y

0

sm−1

(m− 1)!
sin(s) ds

=
ym

m!
sin(y) +

ym−1

(n− 1)!
cos(y)− βm−2(y) cos(y).

The next result provides the ordinary generating function of βm(y).

Corollary 3.2. Let B(x, y) :=
∑
m≥0

βm(y)xm. Then

B(x, y) =
1

1 + x2
[exy(x+ tan(y))− x sec(y)] .

Proof. From Equation (7),

B(x, y) :=
∑
m≥0

βm(y)xm

=sec(y)

∫ y

0

∑
m≥0

(sx)m

m!
cos(s) ds

=sec(y)

∫ y

0

exp(sx) cos(s) ds

=
exy(x cos(y) + sin y)− x

(1 + x2) cos(y)

=
exy(x+ tan(y))− x sec(y)

1 + x2
.

We close this section with a couple of questions and a problem.

Question 3.3. Now, if we let G(x, y) =
∑
m≥0

Fm(y)
xm

m!
, what is the shape

of G(x, y)?
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Question 3.4. If we represent G(x, y) =

∞∑
n=0

Hn(x)
yn

n!
, it is curious what

Hn(x) looks like. How will it be tied to βm(y)’s?

Problem 3.5. One might consider the order polytope of the poset Am,n

and its discrete volume.
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