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SOME RESULTS ON INVARIANT SUBMANIFOLDS OF AN
ALMOST KENMOTSU (k, s, v)-SPACE

MEHMET ATCEKEN AND GiLsiiM YUCA*

Abstract. In the present paper, we study the geometric properties of the
invariant submanifold of an almost Kenmotsu structure whose Riemann-
ian curvature tensor has (k, u, v)-nullity distribution. In this connection,
the necessary and sufficient conditions are investigated for an invariant
submanifold of an almost Kenmotsu (k, u, v)-space to be totally geodesic
under the behavior of functions k, i, and v.

1. Introduction

It is well known that a (2n + 1)-dimensional contact metric manifold M
admits an almost contact metric structure (¢,£,n,g), i.e., it admits global
vector field &, called the characteristic vector field or the Reeb vector field, its
dual is 7, a tensor ¢ of type (1,1) and the Riemannian metric tensor g such
that

(1) P°X =X +n(X)E ) =1, no¢p=0,
and
(2) 9(¢X,0Y) = g(X,Y) — n(X)n(Y),

for all X,Y € I(TM), where I'(TM) denote set of the differentiable vector
fields on M|2].

The manifold M together with the structure tensor (¢,&,7,9g) is called a
contact metric manifold and we will denote it by M@t (¢,€,m, g) in the rest
of this paper.

By 6, we denote the Levi-Civita connection of g, then the Riemannian
curvature tensor of R of M2"+1(¢, £, 1, g) is given by

R(X,Y)=VxVy - VyVx — Vixy],
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for all X,Y € I(TM).

On the other hand, we define the tensor field (1,1)-type by h
WX = (£eh)X,

for all X € F(TM ), where £¢ is the Lie-derivative in the direction of {. Then,
the tensor field h is self-adjoint and satisfies

(3) oh+h¢p =0, trh=tr¢h =0, hé=0.
We have also these formulas for the contact metric manifold

(4) Vx€&=—¢*X — phX, Vep=0.

The contact metric manifold which for £ is Killing vector field is called a K-
contact manifold. It is well known that a contact metric manifold is K-contact
if and only if h = 0.

The (k, p)-nullity distribution of a contact metric manifold M2+l (0,€,1,9)
for the pair (k, ) € R? is a distribution

M(k,p) - p — My(r,p) = {Z, € Ty7(p) :

R(X,Y)Z = r{g(Y, 2)X = g(X, 2)Y} + pfg(Y, Z2)hX — g(X, Z)hY }},

for all XY € F(TM). So, if the characteristic vector field £ belongs to the
(k, p)-nullity distribution, then

R(X,Y)E = r{n(Y)X —n(X)Y} + p{n(Y)hX — n(X)hY},

and the manifold M Intl(g, & m, g) is called (k, p)-contact metric manifold. If &

and p are non-constant smooth functions on M, then the manifold M2+l (9,&,m,9)
is called generalized (k, p)-contact metric manifold[3].

Going beyond generalized (&, u)-space, T. Koufogiorgos, M. Markellos and
V. J. Papantoniou introduced the notation of (s, p, ¥)-contact metric manifold
in [2], its Riemannian curvature tensor R is given by

RX,Y)E = r{n(Y)X —n(X)V} + p{n(Y)hX —n(X)hY}
(5) + v{n(Y)ohX —n(X)phY},

for all X,Y € T'(TM), where k, 1, v are smooth functions on M27+1,

It is well known that an almost contact metric manifold is an almost Ken-
motsu if dn = 0 and d® = 2nAP, where &(X,Y) = g(X, ¢Y) is the fundamental
2-form of M2"+!. If an almost Kenmotsu manifold M2"+! satisfies (5), then
it is called almost Kenmotsu (&, u, v)-space [5].
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Proposition 1.1. Given M2"+1(¢,n,€, g) an almost Kenmotsu (, y, v)-
space, then

(6) o= (k+1)¢% k<1,
(7) (r) = 2k+1)(v-2)
) (Vx@)Y = g(¢X +hX,Y)E—n(Y)(9X +hX)
9) Vxé = —¢°X — ohX
(10)  S(X,8) = 2nkn(X)
REX)Y = r{g(X,Y)6—n(Y)X}+ p{g(hX,Y)E - n(Y)hX}
(11) + v{g(¢hX,Y)E - n(Y)phX}.

They proved that this type of manifold is intrinsically related to the har-
monicity of the Reeb vector on contact metric 3-manifolds. Some authors have
studied manifolds satisfying condition (5) but a non-contact metric structure.
In this connection, P. Dacko and Z. Olszak defined an almost cosymplectic
(k, u, v)-spaces as an almost cosymplectic manifold that satisfies (5), but with
k, 1 and v functions varying exclusively in the direction of £ in[6]. Later exam-
ples have been given for this type manifold[7].

In modern analysis, the geometry of submanifolds has become a subject
of growing interest for its significant applications in applied mathematics and
theoretical physics. For instance, the notion of invariant submanifold is used
to discuss properties of non-linear autonomous system. Also, the notion of ge-
odesic plays an important role in the theory of relativity. For totally geodesic
submanifolds, the geodesics of the ambient manifolds remain geodesics in the
submanifolds. Hence, totally geodesic submanifolds have also importance in
mathematics as well as physical sciences. There have been several papers on
contact metric manifolds which admit covector field £ tangent to the subman-
ifold. In this connection, we refer to [4, 11, 12, 14, 16].

We are especially interested in an invariant submanifold of an almost Ken-
motsu (k, p, v)-space to be pseudoparallel, 2-pseudoparallel, Ricci-generalized
pseudoparallel and 2-generalized pseudoparallel.

Pseudoparallel submanifolds have been studied in different structures and
working on[8, 9, 10]. On the other hand, the study of the geometry of invari-
ant submanifolds was introduced by Bejancu and Papaghuic[10]. In general,
the geometry of an invariant submanifold inherits almost all properties of the
ambient manifold.

In [4], authors show that an invariant submanifold of S-manifolds is totally
geodesic under certain conditions.
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In the present paper, we generalize the ambient space and investigate the
conditions under which invariant pseudoparallel submanifolds of an almost
Kenmotsu (k, i, v)-space are totally geodesic.

Now, let M be an immersed submanifold of an almost Kenmotsu (k, u, v)-
space M2+l By I'(TM) and T'(T+M), we denote the tangent and normal

subspaces of M in M. Then, the Gauss and Weingarten formulae are, respec-
tively, given by

(12) VxY =VxY +0(X,Y),
and
(13) VxV = —Ay X + VLV,

for all X,Y € I'(TM) and V € T'(T+M), where V and V+ are the induced
connections on M, T'(T+ M), o, and A are called the second fundamental form
and shape operator of M, respectively, I'(T'M) denotes the set differentiable
vector fields on M. If 0 = 0, then the submanifold M is called totally geodesic.
They are related by

(14) 9(Av X,Y) = g(o(X,Y),V).
The first covariant derivative of the second fundamental form o is defined by
(15)  (Vxo)(Y,Z)=Vxo(Y.Z) - o(VxY.Z) - o(Y,VxZ),

for all X,Y,Z € T(TM). If Vo = 0, then the submanifold is said to be its
second fundamental form is parallel.

By R, we denote the Riemannian curvature tensor of the submanifold M,
we have the following Gauss equation

R(X,Y)Z = R(X,Y)Z+Asx,2)Y — Ao,y X + (Vx0)(Y, 2)
(16) - (Vyo)(X,2),
for all X,Y,Z e T(TM).

R-ois given by

(R(X,Y)-0)(U,V) = R*X,Y)o(UV)-a(R(X,Y)U,V)
(17) — o(U,R(X,Y)V),
where the Riemannian curvature tensor of the normal bundle T'(T+ M) is given
R(X,Y) = [Vx,V¥] = Vixy
On the other hand, the concircular curvature tensor of Riemannian manifold
(M?"+1 g) is given by
r

(18) CXY)Z=RXYV)Z - 555

{9(V, 2)X —g(X, 2)Y},
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where 7 denotes the scalar curvature of M.
Similarly, the tensor C - ¢ is defined by
C(X,Y)-0)(U, V) = RYX,Y)o(UV)—-o(C(X,Y)U,V)
(19) — o(U,C(X,Y)V),
for all X,Y,U,V € T(TM).

For a (0, k)-type tensor field T, k > 1 and a (0, 2)-type tensor field A on a
Riemannian manifold (M, g), Q(A, T')-Tachibana tensor is defined by

QAT X1,Xa,... X1 X)Y) = —“T(XAaY)X1,Xo,..., Xk)
(20) e T T(XlaXQa"'an—la(X NA Y)Xk)w
for all X1, Xo,..., Xy, X, Y € I(T'M)[8], where
(21) (X AaY)Z = A(Y, 2)X — A(X, Z)Y.

Kowalczyk studied the semi-Riemannian manifolds satisfying Q(S, R) = 0
and Q(S, g)=0[17]. Also De and Majhi investigated the invariant submanifolds
of Kenmotsu manifolds and showed that geometric conditions of invariant sub-
manifolds of Kenmotsu manifolds are totally geodesic[13]. Recently, Hu and
Wang obtained the geometric conditions of invariant submanifolds of a trans-
Sasakain manifolds to be totally geodesic[15]. Furthermore, the geometry of in-
variant submanifolds of different manifolds was studied by many geometers[see
references].

Motivated by the above studies, we make an attempt to study the invariant
submanifolds of an almost Kenmotsu (k, i, v)-space satisfying some the geo-
metric conditions such that Q(S,0) = 0, Q(S,% c0) =0, Q(S,R-0) = 0,
Q(g,C-0)=0and Q(S,C-0)=0.

Finally, we show that the submanifold is either totally geodesic or functions
K, 14, and v satisfy some conditions.

2. Some Results On Invariant Submanifolds of an Almost Ken-
motsu (k, u, v)-Space

Now, let M2"+1($, €, 1, g) be an almost an almost Kenmotsu (k, 1, v)-space
and M be an immersed submanifold of M2 1. If ¢(T,M) C T,M, for
each point at z € M, then M is said to be an invariant submanifold of
M%“((ﬁ,@n,g) with respect to ¢. From (3), one can easily see that an in-
variant submanifold with respect to ¢ is also invariant with respect to h.

Proposition 2.1. Let M be an invariant submanifold of an almost Ken-
motsu (k, p, v)-space M?" (¢, €, n, g) such that £ is tangent to M. Then the
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following equalities hold on M ;
R(X,Y)E = wn(Y)X —n(X)Y]+ p[n(Y)hX —n(X)hY]

(22) + v[n(Y)phX —n(X)phY]

(23) (Vxo)Y = g(¢X +hX,Y)E—n(Y)(¢X + hX)
(24) Vxé = —¢°X —phX

(25) po(X,Y) = 0o(¢X,Y)=0(X,0Y), o(X,§) =0,
(26) S(X,8) = 2nkn(X)

where V, o and R denote the induced Levi-Civita connection on M, the second
fundamental form and Riemannian curvature tensor of M, respectively.

Proof. We will omit the proof as it is a result of direct calculations. O

In the rest of this paper, we will assume that M is an invariant submanifold
of an almost Kenmotsu (k, i, v)-space M?"+1(¢, &, 7, g). In this case, from (3),
we have

(27) OhX = —hoX,
for all X € T(T'M), that is, M is also invariant with respect to the tensor field h.

First, we look for the invariant submanifold of an almost Kenmotsu (k, u, v)-
space satisfying Q(S,0) =0. For A =S and T = o in (20), we have
—Q(S,0)(U,V;X)Y) = o((XAsY)U,V)+0o(U, (X NsY)V)

= S U)o(X,V) - S(X,U)a(Y,V)

+ SY,V)o(U,X)—-S(X,V)o(U,Y) =0.
for any X,Y,U,V € T'(TM). Here, setting X =V = ¢ and taking into account
of (25) and (26), we conclude that

2nko(U,Y) = 0.

Therefore, we can state the following.

Theorem 2.2. Let M be an invariant submanifold of an almost Kenmotsu
(k, g, v)-space M?" (¢, €, m,g). Then Q(S,0) = 0 if and only if M is totally
geodesic provided k # 0.

Next we demonstrate the invariant submanifold of an almost Kenmotsu
(k, p, v)-space satisfying Q(S, V-o) = 0. Consider the invariant submanifold M
of an almost Kenmotsu (k, i, v)-space M2"1(¢, &1, g) satisfying Q(S,V-0) =
0. This means that
—-Q(S,V-0o) UV, Z;X,Y) = (Vixasvivo)(V.Z)+ (Vyo)(X As Y)V, Z)
(28) + (Vuo)(V,(X As Y)Z) =0.
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Putting Y =V = ¢ in (28) and by means of (10), (15), (20) and Proposition
2.1, we obtain

(Vixnsewo)(€, 2) (Vo) (X As €)é, Z)

_|_
(29) + (Vuo)(& (X ns §)2) =
We will calculate each term. First,

(Vixnseywo) (€, 2)

—0(Vixnseywé, Z)

= (¢ (X As &)U + ¢h(X As U, Z)
= —o(S{E U)X - S(X,U)¢,2)

+ a(ph[S(E, U)X — S(X,U)¢], 2)

(30) 2nen(U){¢o(hX, Z) — o(X, Z)},

(Vuo)(X As €)6,Z) = (§UU)~(S(£,§)X S(X,8)¢,2)

2nk{(Vyo)(X, Z) — (Vuo)(n(X)E, Z)}
2nk{(Vyo) (X, Z) + o(Vun(X)E, Z)}
2nk{(Vuo) (X, Z) + o (Un(X)IE + n(X)VuE, 2)}
= 2k{(Vyo)(X,Z) —n(X)o(¢*U + ¢hU, Z)}
= 2n6{(Vyo)(X, Z) +n(X)o(U, Z)
(31) n(X)o(ohU, Z)}

(Vuo)(€. (X ns€)Z) = (Vuo)(€ S 2)X — S(X, 2)6)
= (Vuo)(& 20mn(2)X) — (Vo) €, S(X, 2)¢)
= =2nko(Vy&,n(Z2)X)
= 2nxn(2)o($*U + ¢hU, X)
(32) = 2nkn(Z){po(hU,X) —o(U, X)}.
Substituting (30), (31) and (32) in (29) provided x # 0, we have
o(X,

n(U){¢o(hX,Z) - 2)} +{(Vuo)(X, 2) +n(X)o(U. Z)
— n(X)ga(hU, 2)} +n(2){¢o(hU, X) — o (U, X)}
(33) =

=1

Setting Z = ¢ in (33) and by virtue of Proposition 2.1, we can infer
(Vuo)(X,€) + ¢o(U, X) —o(hU, X) = —o(Vué X)
+ ¢o(hU,X)—0o(U,X) =
that is,
(34) ¢o(hU,X) —o(U,X) =
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If hU is written instead of U in (34) and taking into account Proposition 2.1
and (6), we have
(35) ¢o(h*U,X) —o(hU,X) = —(k + 1)¢o(U, X) — o(hU, X) = 0.
From (34) and (35), we conclude that
ko(U,Z) = 0.
Thus, we have the following.

Theorem 2.3. An invariant submanifold of an almost Kenmotsu (k, i, V)-

space M2"+1(¢. € 0, g) satisfies Q(S, V-o) = 0 if and only if it is totally geodesic
provided & # 0.

Now, we will calculate the condition Q(S, R - o) = 0. (17) and (20) implies
that

(R(X,Y)-0)((Z As WYU,V) + (R(X,Y) - o) (U, (Z As W)V) = 0,

for all XY, U,V,Z, W € I'(TM). Expanding the last equality and inserting
Y=U=V=W =¢, we have

(R(X,€) 0)(5(£,€)2,€) = (R(X,€) - 0)(S(Z,€)&,€) = 0.
By making use of (5) and (17), it follows that
2nko(R(X,€)E, Z) = 2nko (k[ X — n(X)€] + phX + vophX, Z) = 0,
that is,
(36) ko(X,Z) + po(hX,Z) +vpo(hX,Z) = 0.

If hX is written instead of X in (36) and taking into account Proposition 2.1,
we have

(37) ko(hX,Z) — (k+ 1)[po(X,Z) +vpo(X,Z)] = 0.
From (36) and (37), we conclude that

K%+ (8 + D) (1 =)o (X, Z) + 2(k + Duvgo (X, Z) = 0.
Hence, we mention the following theorem.

Theorem 2.4. Let M be an invariant submanifold of an almost Kenmotsu
(k, p, v)-space M?"T1(¢, €, n,g) satisfying Q(S,R - o) = 0. Then, M is either
totally geodesic or k? + (k + 1)(u? — v?) =0, and (k + 1)p.v = 0.

Next, we research the condition Q(g,C - o) = 0. By means of (19) and (20),
we have
—Q(g,C(X,)Y)-0)(U,V,Z,W) = (C(X,Y) 0)((Z N W)U, V)
+ (C(X)Y)-0)(U,(ZAgW)V) =0,
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for all X,Y,U,V,Z W € I'(TM), which implies that
CXY)-0)gUW)Z, V) — (C(X)Y)-0)(g(Z,UW,V)
CX.Y)-0)(Ug(V\W)Z) - (C(X.Y)-0)(U.g(Z, V)W)
= 0.

Here taking Y =V = U = Z = ¢, by view of Proposition 2.1 (5), (18) and
(19), we have

(C(X,€) - a)(n(W)E = W,€) = R(X,a(n(W)E~W,

that is,
RH(X,o(n(W)E,€) — RH(X,&)a(W,€) —n(W)a(C(X,€)E,€)
+ o(C(X, W, &) —n(W)o(C(X,€)E,§)
(38) + o(C(X, & W) =0.

By virtue of Proposition 2.1, non-vanishing components of (38) give us

O'(C(X,f)g,W) = (K_ 271(2;—_’_1)) O'()(7 W) -‘r/J:O'(hX, W)
(39) + vgo(hX, W) =0.

In (39), If hX is written instead of X in (39) and taking into account that
Proposition 2.1, (6), we have

<n - 2n(2n+1)) o(hX, W) — (k+1)(po(X, W)
(40) + voo(X,W))=0.

Thus, (39) and (40) imply that

<l€ - 277‘(2”4_1)) + (KJ + 1)(,U2 _ y2)‘| (J'(AXV7 W) + 2(/{ —+ I)NVQZ)U(X, W) =0.

Therefore, the following theorems may be noted.

Theorem 2.5. Let M be an invariant submanifold of an almost Kenmotsu
(k, g, v)-space M*" (¢, &, m,g). Then, Q(g,C - o) = 0 if and only if M either
is totally geodesic or the scalar curvature T of the ambient manifold is given by

T=2n2n+1) {n$ (m—&-l)(yQ—/ﬂ)}, (k+1)pr =0.

Theorem 2.6. Let M be an invariant submanifold of an almost Kenmotsu
(k, i, v)-space M*" T (¢, €. n,g). Then, Q(S,C - o) = 0 if and only if M either
is totally geodesic or the scalar curvature T of the ambient manifold is given by

T:2n(2n—|—1)[f<::|: (H—Fl)(u?—,uz)], pwv =0, k#0.
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