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ENUMERATION OF FUSS-CATALAN PATHS BY TYPE AND
BLOCKS

SUHYUNG AN, JIYOON JUNG, AND SANGWOOK Kim*

Abstract. Armstrong enumerated the number of Fuss-Catalan paths
with a given type and Rhoades provided the number of Dyck paths with
a given type and a given number of blocks. In this paper we generalize
those results to enumerate the number of Fuss-Catalan paths with a fixed
type and a fixed number of blocks. We provide two proofs of this result.
The first one uses the Chung-Feller theorem and a certain polynomial,
while the second one is bijective. Also, we give a conjecture generalizing
this result to the family of small Fuss-Schroder paths.

1. Introduction

A Dyck path of length n is a lattice path from (0,0) to (n,n) using east
steps E = (1,0) and north steps N = (0,1) such that it stays weakly above
the diagonal line y = z. It is well-known that the number of Dyck paths of
length n is given by the famous Catalan numbers

1 2n

n+1 ( n > '
For a Dyck path, its type is the integer partition formed by the lengths of E runs,
the maximal adjacent east steps. For example, a path NENNNEENFEENFE
has a type A = (2,2,1,1). The enumeration of Dyck paths by type was first
done by Kreweras [4] in the context of noncrossing partitions.

Now we introduce the Fuss analogue of Dyck paths. Given a positive inte-
ger k, a k-Fuss-Catalan path of length n is a path from (0,0) to (n,kn) using

east steps E and north steps N such that it stays weakly above the line y = kx.
The number of k-Fuss-Catalan paths of length n is given by the Fuss-Catalan
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The type of a k-Fuss-Catalan path is also determined by its £ runs and Arm-
strong [2] enumerated the number of k-Fuss-Catalan paths of a given type.
A block of a k-Fuss-Catalan path is a section beginning with a north step N
whose starting point is on the line y = kz and ending with the first east step £
that returns to the line y = kx afterwards. Rhoades [6] provided the number
of Dyck paths with a fixed type and a fixed number of blocks.

In this article, we provide the number of k-Fuss-Catalan paths with a given
type and a given number of blocks, and two proofs of this result. In Section 2,
we prove the case of k-Fuss-Catalan paths with only one block using Chung-
Feller theorem and use a polynomial introduced by Zeng [7] to show the general
case. The second proof is bijective and is provided in Section 3. We finish this
paper with a conjecture about the number of small (k, r)-Fuss-Schréder paths
with a given type and a given number of blocks, defined in Section 4.

numbers

2. Fuss-Catalan paths with a fixed type and a fixed number of
blocks

We begin with prior work done on the topic and the necessary terminology
to proceed. In what follows, we enumerate the number of k-Fuss-Catalan paths
with a fixed type and exactly one block and generalize the result to the case
with any fixed number of blocks.

Given a partition A = (A1,...,\p) = 1™12™2...n™n |- n_ we have

C=mi+mo+--+my,
n=1-m1+2-mao+---+n-my=>A+--+ A\
Armstrong [2] enumerated the number of k-Fuss-Catalan paths of a given

type.

Theorem 2.1. The number of k-Fuss-Catalan paths of length n with a
type A = (A1,...,Ae) Is

(=1 nk\_1 14 nk
myx \L—1) \mi,mo,...,m,/\L—1)"

Here, my := mq(A\)!ma(A)!ms(A)!- - - m, (X)! where m; () is the number of parts
of X equal to i.

Rhoades [6] provided the number of Dyck paths with a fixed type and a
fixed number of blocks. Note that he used the notion of connected components
instead of blocks.
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Theorem 2.2. The number of Dyck paths of length n with a type A =
(M, ..., ) and exactly m blocks is

-/m-—m-1 m L n—m—1
m= — )
my {—m £ \my,ma,...,my {—m

To generalize Rhoades’ result to k-Fuss-Catalan paths, we look at some
terminology first. For a partition A = (Aq,...,A¢) F n, we define r(\) =

(m1(N),...,mu(N)). For v.e N* let Ag\m) (x;v) € R[z] be a polynomial
(£—1)! x (@ 4+1r(N) - V)immt1
—m)z+r())-v m

=z l z4+r(A)-v—1
4 \my,ma, .. mp {—m ’

where (y); = yly —1)---(y — i + 1) is a falling factorial. This polynomial is
introduced by Zeng [7] and he used the polynomial to prove various convolution
identities involving multinomial coefficients. Rhoades [6] showed that, if v =
(1,2,...,n), then
(1) Ag\l) (1;v) is the number of all Dyck paths of length n with a type A, and
(2) —Ag\m)(—m; v) is the number of all Dyck paths of length n with a type A
and m blocks.
One can easily check that, if v = (k,2k,...,nk), then Ag\l)(l;v) is the
number of all k-Fuss-Catalan paths of a type A. In Theorem 2.4, we show that

AP iy = D! (nkz —m— 1>m

my {—m

Ag\m) (z;v) =

with v = (k,2k,...,nk) is the number of k-Fuss-Catalan paths of a type A
with m blocks. First, we prove that —Ag\l)(—l;v) with v = (k,2k,...,nk) is
the number of k-Fuss-Catalan paths with a type A and only one block using
the Chung-Feller theorem.

Lemma 2.3. The number of k-Fuss-Catalan paths of length n with a type

A= (A1,...,A¢) F n and only one block is
(=1l /nk—-2\ 140 (nk—2
my /-1 o 4 my -1 '

Proof. Let L be the set of all lattice paths from (0,0) to (n,nk) of a type A
with an east run of height nk and no east runs of height 0 and 1. Since there
are ("Kk:f) ways to assign the heights to (£ — 1) remaining east runs and %
ways to arrange £ east runs, the total number of lattice paths in L is m’% (nﬁ _12)

The flaws of the paths in L are the east runs, not of height nk, whose
right end points are lying on or below y = kxz. Note that the paths with
0 flaws in L are k-Fuss-Catalan paths of length n with a type A and one block.
Now we provide algorithms showing the number of paths with u flaws in L is
independent of u for every u such that 0 < u < /¢ — 1.




644

L.

IT.

Suhyung An, JiYoon Jung, and Sangwook Kim

Algorithm for increasing the number of flaws: Let P be a path with
(u—1) flaws for 1 < u < ¢ —1. Then P can be uniquely decomposed
into NMj My --- M, by cutting P at a point (0,1) and a right endpoint
of each E run. Note that there are components whose right endpoints
are above y = kx since P has less than ¢ — 1 flaws, and let M;_; be the
highest of such components where 2 < ¢ < /. Then bring down M; - - - M,
right before M;_; and, if the moved /-th E run becomes a new flaw, stop
here. Otherwise, bring down M; - - - M, right before M;_o and again, if
the moved /-th F run becomes a new flaw, we may stop. This process is
continued until the moved ¢-th E run of P becomes a new flaw for the
first time, and let Q@ = NMy--- M;_M;--- MM, --- M;_; denote the
path obtained after the process.

By construction, M, gives a new flaw, while M; - - - M;_; still contains

no flaws, and so the new flaw is the highest flaw in ). Since the right
endpoint of My is on or below the line y = kx, M;--- My_; still gives
(¢ — i) flaws in Q. Since NM; --- M;_; stays the same, () has exactly
one more flaws than P.
Algorithm for decreasing the number of flaws: Conversely, let @) be a path
with v flaws for 1 < u < ¢—1. For a decomposition Q = NM'M?. .. M?t
defined in a similar way to P, let M be the component including the last
flaw and let M* be the highest component such that M --- M? contains
less N steps than a k-fold of E steps where 1 < s < ¢t. Then we can
bring back P = NM' - M5~ M. MEMS ... Mt from Q by moving
M# .- M? after M*.

M? becomes the last component of P after construction, and so it
does not have a flaw anymore. As by M? is defined in Q, M*--- M*~!
keeps (t — s) flaws and M**!... M* still contains no flaws in P. Since
NM?' ... M5! stays the same, P has exactly one less flaws than Q.

These algorithms provide a bijection between two sets of paths with u flaws
and (u — 1) flaws respectively for 1 < u < £ — 1. Thus the number of paths is
independent of the number of flaws. O

Now we provide the main theorem. Although the proof is similar to the case

of Dyck paths presented in [6] when using the base case —Ag\l)(—l;v) where
v = (k,2k,...,nk) in Lemma 2.3, we include the proof for completeness.

Theorem 2.4. The number of k-Fuss-Catalan paths of length n with a
type A = (A1,..., ) F n and m blocks is

-1 /nk—m-—1
my {—m m

Proof. The polynomial Af\l)(mm; v) can be written as

AP (ma;v) = 3 AR (@5v) - AR (3 v)
(A1) r(Am) =r(A)
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where \® is a partitions into parts < n for each i using a result of Raney [5,

Theorem 2.2, 2.3] and induction. By Lemma 2.3 and the fact that Aél) (r;v)=1
where 0 is the empty partition, we can set x = —1 and v = (k, 2k,...,nk) to
get

m
> (T>0<n7z‘, A) = A (=)
i=1
where C(n, i, \) is the number of k-Fuss-Catalan paths of length n with a type A
and ¢ blocks. By the Principle of inclusion and exclusion, we have

m ; m (1) '
C A) = -1 AV (—i;v).
o =31 () A i
It is enough to show that the right hand side of the above equation is equal to
—AE\m)(—m; v). We start with the following identity:

e (D) (i)

i=1
- . (£-1)! , " D) (e
Multiplying both sides by and using the definition of A}’ (z;v), we
ma

get

= Am\ 1, . (-1 nk—m—1

1 AW (—iv) =
S - G

3. Bijective proof of the main theorem

In this section, we provide a bijective proof of Theorem 2.4. In Subsec-
tion 3.1, we give a set of desired cardinality. In Subsections 3.2 and 3.3, we
give a bijection between this set and the set of Fuss-Catalan paths with de-
sired property. To clarify the path constructions in the proof, we begin by
referencing some basic definitions and useful terms.

A lattice path is said to touch a line y = kx at a point (s, ks) if the path
contains a solid E run having a right end point (s, ks). Every k-Fuss-Catalan
path can be decomposed into blocks by cutting the path at each point where
the path touches the diagonal line y = kx. A circular shift of blocks is the
operation of rearranging the blocks of lattice paths by moving the final block
to the first and shifting all other blocks to the next. Two k-Fuss-Catalan paths
are equivalent if one can be obtained by repeatedly applying circular shifts to
the other. Note that the size of the equivalence class of a k-Fuss-Catalan path
is m if all the m blocks of the path are distinct.

Remind that my := mi(A)! ma(X)! mg(A)! ---my(A)! where m;(A) is the
number of parts of A equal to i. Because interchanging the east runs of the
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same size does not lead to a different path, and all the blocks of a k-Fuss-
Catalan path are distinct if all the parts of A are distinct, it is enough to
show the number of equivalence classes on k-Fuss-Catalan paths of a type

A= (A1 > Ay > > A) F n with m blocks is (£ — 1)!(”'“[77:‘[1) in this proof.

3.1. A set £ of desired cardinality

We first consider the set of partially dotted lattice paths from (0,0) to
(n,nk) of a type A = (A1 > A2 > -+ > A\¢) b n with m blocks such that:

(A) The E run of length A, is ended at a point (n,nk). See Figure 1.

FIGURE 1. The shortest F run of length 1 is fixed as the last
run of a path where n =10,k = 2, and A = (4,3,2,1).

(B) Exactly (¢ —m) F runs are drawn as dotted lines, and none of them has
a height 0,1, (n —m+ 1)k, ..., (n— 1)k or nk. Here, the heights 0 and 1
are avoided because they produce trivial flaws. The heights (n—m-+1)k,
..., (n = 1)k and nk are reserved for Step (a) below. There are (f:il)
different selections of these dotted E runs, (£ — m)! orderings for each

”k_m_l) ways to assign heights to the dotted F runs. See

selection, and ( s

Figure 2.

(C) There are (m — 1)! different orderings for the remaining (m — 1) solid
E runs. For each ordering, the heights of the (m — 1) solid E runs are
uniquely assigned so that the (m — 1) solid E runs touch the line y = kz
and the region under the generated lattice path is as large as possible.
See Figure 3.

Note that there are (Z_l)(ﬁ - m)!("k_m_l) (m—-1)!= - 1)!("k_m_1) lattice

l—m l—m L—m

paths satisfying the above conditions. On the lattice paths, if a dotted E run
is ended at the point (s,ks —¢q) for 1 < s < n—1 and 0 < ¢, we say the
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= «—— No dotted E runs

—— mEEE

«—— No dotted F runs

¢—— HEHEEEEEN

7 «—— No dotted F runs
«— No dotted F runs

FIGURE 2. E runs of lengths 2 and 4 are selected as dotted
lines, and their orders and heights are decided as shown where
n=10,k=2,m=2 and A = (4,3,2,1).

U
— EEER ’ — EEER
// /
/ /
/ /
|/ /
/ /|
7/ /
/ /
Vv
/| /
//
- — EEEEEEN| - «— EEEEEEN
/
/
/ /
/ /
/ /
- Area =128 (V) |/ Area = 104 (X)

FIGURE 3. To generate the lattice path having a maximal
area under the path, the remaining solid E run of length 3
should touch the main diagonal y = 2z at height 14 where
n=10,k= 2,m=2,and A = (4,3,2,1).

E run has ¢-flaw. Note that, if ¢ is a nonzero, then the ¢g-flawed E runs are
located in the first block. Otherwise, there exists a solid E run before a g(# 0)-
flawed E run. Then, a lattice path with larger region under the path can be
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generated by moving the solid F run after the ¢(# 0)-flawed E run, and this
is a contradiction to Condition (C).

Next, for 0-flawed E runs located after the first block, we need the following
steps:

(a) If there are p 0-flawed F runs after the first block for p > 1, assign them
new heights (n — p)k, (n —p+ 1)k, ..., (n — 1)k in order. See Figure 4.

S —
N
N

7 — EEEEEEN|

saamse «— (O-flawed

<« undotted

FIGURE 4. The first solid F run is of the height 6, and the 0-
flawed E run of the height 14 is moved the line of the height 18
where n =10,k = 2,m =2, and A\ = (4,3,2,1).

(b) Keeping the order of m solid E runs, the heights of the m E runs are
uniquely reassigned so that the m FE runs touch the line y = kz and
the region under the generated lattice path is as large as possible. See
Figure 5.

Note that all the O-flawed E runs after the first block are now moved to after
the penultimate solid E run. That means newly rearranged lattice paths have
0-flawed E runs only in the first and last blocks. Each of these new lattice
paths generated by Steps (a) and (b) has a dotted E run of height (n — 1)k,
but the former lattice paths have no dotted E run of height (n — 1)k since the
existence of 0-flawed E runs after the first block means m > 1 in Condition (B).
Therefore, there is no intersection between the set of new generated lattice
paths and the set of former lattice paths. And, it is easy to check that two
lattice paths generated from two different former lattice paths are also different.
Hence, there still exist (£ — 1)!(%@?&_1) lattice paths, and let £ be the set of
these lattice paths.
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¢—— EEEENI

<« relocated

FIGURE 5. The solid F run of the height of 18 is relocated at
the height of 12 where n = 10,k =2,m =3, and A = (4,3,2,1).

3.2. A map from £ to §

In this subsection and the next, we provide a bijection from £ to the set §
of representatives of equivalence classes on k-Fuss-Catalan paths of a type
A= (A1 > A2 > - > N\) b n with m blocks where representatives are k-Fuss-
Catalan paths with the last block containing the E run of length A,. For the
map from £ to §, consider three cases:

(1)

(i)

If there is no flawed E run, that means all the (¢ —m) dotted F runs are
strictly above the main diagonal y = kz, then let the dotted F runs be
solid. We obtain k-Fuss-Catalan paths of a type A with m blocks such
that the E run of length A is fixed as the last step.

If flawed E runs exist only in the last block, Step (a) in Subsection 3.1
implies that A\, should be 1 and the flawed E run with the right end
point (n — 1, (n — 1)k) should be the only flawed E run. Then, let (¢, tk)
be the starting point of the last block, and switch the segment from
(t,tk+ 1) to (n — 1,(n — 1)k) and the segment from (n — 1, (n — 1)k)
to (n,nk). See Figure 6. Remind that the E run of length A, does not
touch the diagonal y = kz anymore since the N step from (¢,tk) to
(t,tk +1) was fixed while switching segments, and the only flawed E run
that was ended at the point (n — 1, (n — 1)k) touches the main diagonal
at (n,nk). Therefore, if all the dotted E runs are solid, then we obtain
k-Fuss-Catalan paths of a type A with m blocks such that the last block
begins with the N run of length (1 + k) followed by the E run of length
A = 1.
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v switch v

FIGURE 6. Switch the segment from (6,13) to (9,18) and the
segment from (9, 18) to (10, 20) where (¢,tk) = (6,12), (n — 1,
(n—1k)=1(9,18),n =10,k =2,m =2, and A = (4,3,2,1).

(iii) If flawed F runs exist in the first block, let (v, w) and (a,b) be right end

points of the rightmost flawed one and the leftmost worst-flawed one of
the flawed F runs respectively. Here, a worst-flawed E run is the g-flawed
E run with maximal ¢q. Then, apply (—v (mod n), —vk (mod nk))-shift
on the lattice path. That means, the segment from (0,0) to (v, vk) is
moved right after a point (n,nk), and a point (v,vk) becomes a new
origin. After that, cut off the segment from (n — v, nk — vk) to (n — v,

nk — vk + 1) that was the N step from (0,0) to (0,1) and the segment
from (a—v+n,b—vk+nk) to (n,nk) that was the segment from (a, b) to
(v, vk), and place them in order right after the starting point of the block
containing the E run of length \y. See Figure 7. Since flawed F runs
were located in the first and last blocks only, and (v, w) was the right
end point of the rightmost flawed E run in the first block, all the flawed
FE runs were shifted after the starting point of the block containing the
E run of length \;. Because we moved the N step from (n — v, nk — vk)
to (n —v,nk — vk + 1) and the segment from (a — v + n,b — vk + nk)
to (n,nk) right after the starting point of the block containing the E
run of length Ay, and (a,b) was a right end point of the leftmost worst-
flawed F run, there is no more flawed E runs when all the arrangements
are finished. And, every rearranged lattice path still consists of m blocks
since F run that was ended at a point (a, b) touches the main diagonal at
(n,nk) while the E run of length )\, does not touch the diagonal y = kz
anymore. Therefore, if all the dotted E runs are solid, then we obtain
k-Fuss-Catalan paths of a type A with m blocks such that the last block
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shift

FIGURE 7. Take (—6 (mod 10),—12 (mod 20)) shift where
(a,b) = (v,w) = (6,11), n = 10,k = 2,m = 2, and A =
(4,3,2,1). After that, move the segments from (4, 8) to (4,9)
and from (10,19) to (10,20) right after a point (3, 6).

contains the E run of length Ay, but the E run of length ), is not the
last run of the path and the last block doesn’t begin with the N run of
length (1 + k) followed by the E run of length 1.

3.3. A map from § to £

Inversely, take a k-Fuss-Catalan path of atype A= (A > X2 > -+ > N b n
with m blocks which has the E run of length A, in the last block. We also
consider three cases:

(i)
(i)

(iii)

If the E run of length A, is the last run of the path, we get a path in £
by letting E' runs not touching the line y = kz as dotted lines.

If the last block begins with the N run of length (1 + k) followed the E
run of length 1, decompose the last block into 3 components by cutting
right after the first NV step of the last block and the E run of length 1.
After the second component is switched with the third component, if the
E runs not touching the line y = kx and the E run of height of (n — 1)k
become dotted, we get a path in £ such that the F run of height (n— 1)k
is the only dotted line touching the main diagonal y = kz.

If the E run of length Ay is not the last run of the path and the last
block doesn’t begin with the N run of length (1 + k) followed by the E
run of length 1, decompose the last block into 5 segments P Po P3P, P5
in order where P is the first N step of the last block, P5 is a sequence
containing kA; N steps such that the first and the last are N steps, and
P, is the E run of length of A\p. Then, rearrange the last block in order



652 Suhyung An, JiYoon Jung, and Sangwook Kim

P3P, P, Ps Py, and apply circular shifts so that the E run of length of A\,
can be the last run of a path.

It is not hard to see that each case is the inverse of corresponding case in
Subsection 3.2.

4. Future work about small Fuss-Schroder paths

In this section, we provide a conjecture which generalizes Theorem 2.4 to
the case of small (k,r)-Fuss-Schroder paths.

For k and r such that 1 < r < k, a small (k,r)-Fuss-Schréder path of
length n is a path from (0,0) to (n,kn) using east steps, north steps, and
diagonal steps D = (1,1) that satisfies the following three conditions:

(1) the path never passes below the line y = kz,
(2) the diagonal steps are only allowed to go from the line y = kj+r —1 to
the line y = kj + r, for some j such that 0 < j <n — 1, and
(3) no diagonal steps touch the main diagonal line y = k.
Eu and Fu [3] showed that the number of small (k, r)-Fuss-Schroder paths with
a fixed length and a fixed number of diagonal steps is independent of r.

The type of a small (k,r)-Fuss-Schroder path is determined by its E runs.
Note that the type of a small (k, rr)-Fuss-Schroder path of length n is a partition
of some number less than or equal to n. An, Jung, and Kim [1] enumerated
the number of small (k,r)-Fuss-Schroder paths of a given type.

Theorem 4.1. The number of small (k,r)-Fuss-Schréder paths of length n
with a type A = (A\1,...,A¢) for 1 <r <k is

-1/ nk n—1
my -1 ‘)\| —1 ’
where |)| is the sum of the parts of \.

A block of a small (k,r)-Fuss-Schroder path is a section beginning with a
north step N whose starting point is on the line y = kx and ending with the
first east step E that returns to the line y = kz afterwards. Eu and Fu [3]
provided the number of small (k,r)-Fuss-Schréder paths with d diagonal steps
and m blocks.

Theorem 4.2. The number of small (k,r)-Fuss-Schréder paths of length n
with d diagonal steps and m blocks is

m(n kn+n—d—m-—1
n \d n—d—m ’

This work moves towards the goal of proving the following conjecture about
the number of small (k,r)-Fuss-Schréder paths with a fixed type and a fixed
number of blocks.

independent of r.
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Conjecture 4.3. The number of small (k, r)-Fuss-Schréder paths of length n

with a type A = (A1, ..., A¢) with m blocks is
(-1 /nk—m-—1 n—1
A m ’
my {—m Al =1
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