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A NOTE ON (k, µ)
′
-ALMOST KENMOTSU MANIFOLDS

Sunil Kumar Yadav∗, Yadab Chandra Mandal, and Shyamal
Kumar Hui

Abstract. The present paper deals with the study of generalized quasi-

conformal curvature tensor inside the setting of (k, µ)
′
-almost Kenmotsu

manifold with respect to η-Ricci soliton. Certain consequences of these
curvature tensor on such manifold are likewise displayed. Finally, we

illustrate some examples based on this study.

1. Introduction

The idea of k-nullity distribution was started by Gray [15] and Tanno [31]
in the study of Riemannian manifolds (M, g), which is defined for any p ∈ M
and k ∈ R as follows

Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]}

for any X, Y ∈ TpM , where TpM denotes the tangent vector space of M at any
point p ∈ M and R denotes the Riemannian curvature tensor of type (1, 3).
Blair, Koufogiorgos and Papantoniou [1] introduced a generalized notion of the
k-nullity distribution, known as (k, µ)-nullity distribution on a contact metric
manifold (M2n+1, ϕ, ξ, η, g), which is defined for any p ∈ M and k, µ ∈ R as
follows:

Np(k, µ) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]
+µ[g(Y, Z)hX − g(X,Z)hY ]}

where h =
1

2
Lξϕ and L denotes the Lie derivative.

In (see, [10], [11], [12]) Dileo and Pastore introduced the notion of (k, µ)
′
-nullity

distribution. Moreover, generalized notion of the k-nullity distribution on an
almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g), is defined for any p ∈ M2n+1
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and k, µ ∈ R as follows:

(1)
Np(k, µ)

′
= {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]

+µ[g(Y, Z)h
′
X − g(X,Z)h

′
Y ]},

where h
′
=h ◦ ϕ.

A Ricci soliton is a generalization of an Einstein metric. In a Riemannian
manifold (M, g), the metric g is called a Ricci soliton if [16]

1

2
LV g + S + λ1g = 0,

where L is the Lie derivative, S the Ricci tensor, V a complete vector field
on M and λ1 is a constant. Compact Ricci solitons are the fixed points of the
Ricci flow ∂

∂tg=-2S projected from the space of metrics onto its quotient modulo
diffeomorphisms and scalings, and often arise as blow-up limits for the Ricci
flow on compact manifolds. The Ricci soliton is said to be shrinking, steady and
expanding if λ1 is negative, zero and positive respectively. A Ricci soliton with
V=0 is reduced to Einstein equation. During the last two decades, the geometry
of Ricci solitons have been the focus of attention of many mathematicians (see,
[5], [6], [7], [8], [9], [13], [17]-[24], [26]). It has became more important after
Perelman applied Ricci solitons to solve the long standing Poincaré conjecture
posed in 1904.
The η-Ricci soliton (ξ, g, λ1, λ2) is the generalization of the Ricci soliton (ξ, g, λ1)
and is defined as [6]

(2) Lξg + 2S + 2λ1g + 2λ2η ⊗ η = 0,

where λ2 is a real constant.
Thereafter, Ricci solitons and η-Ricci solitons in contact metric manifolds have
been studied by various authors such as S. K Yadav et. al (see, [37], [38], [39],
[40], [41], [42], [43]) and many others.
Recently, Yano and Sawaki [35], Baishya et al. [4] introduced and studied
generalized quasi-conformal curvature tensor Cq in the context of N(κ, µ)-
manifold. The generalized quasi-conformal curvature tensor Cq is defined for
an n-dimensional manifold as
(3)

Cq(X,Y )Z = n−1
n [{1 + (n− 1)a− b} − {1 + (n− 1)(a+ b)}c]C(X,Y )Z

+ [1− b+ (n− 1)a]E(X,Y )Z + (n− 1)(b− a)P (X,Y )Z

+n−1
n (c− 1){1 + (n− 1)(a+ b)}Ĉ(X,Y )Z,

for all X,Y, Z ∈ χ(M), where the scalars (a, b, c) being real constants and the

symbols C, E, P and Ĉ stand for conformal, concircular, projective and con-
harmonic curvature tensors respectively. Thus the generalized quasi-conformal
curvature tensor Cq can be characterized as, Riemann curvature tensor R if

(a, b, c) ≡ (0, 0, 0), conformal curvature C [14] if (a, b, c) ≡
(
− 1

n−2 ,−
1

n−2 , 1
)
,

concircular curvature tensor E [36] if (a, b, c) ≡ (0, 0, 1), projective curvature
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tensor P [36] if (a, b, c) ≡
(
− 1

n−1 , 0, 0
)
, conharmonic curvature tensor Ĉ [25]

if (a, b, c) ≡
(
− 1

n−2 ,−
1

n−2 , 0
)

and m−projective curvature tensor H [30] if

(a, b, c) ≡
(
− 1

2n−2 ,−
1

2n−2 , 0
)
. Thus the equation (3) reduces

Cq(X,Y )Z = R(X,Y )Z + a[S(Y, Z)X − S(X,Z)Y ] + b[g(Y, Z)QX

− g(X,Z)QY ]− cr

n

(
1

n− 1
+ a+ b

)
[g(Y, Z)X − g(X,Z)Y ] ,(4)

where S,Q and r denotes as usual meaning on M respectively.
The above works motivate us to study generalized quasi-conformal curvature
tensor in the domain of (k, µ)

′
-almost Kenmotsu manifold with respect to η-

Ricci soliton.

2. Almost Kenmotsu manifolds

A differentiable (2n+1)-dimensional manifold M is said to have a (ϕ, ξ, η)-
structure or an almost contact structure, if it admits a (1, 1)-tensor field ϕ, a
characteristic vector field ξ and a 1-form η satisfying ( see, [2], [3]):

(5) ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

where I denote the identity endomorphism. Also ϕξ = 0 and η◦ϕ = 0 both can
be derived from (5) easily. If a manifold M with a (ϕ, ξ, η)-structure admits a
Reimannian metric g such that

(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for any vector fieldsX, Y of TpM
2n+1, thenM is said to have an almost contact

structure (ϕ, ξ, η, g). The fundamental 2-form θ on an almost contact metric
manifold is defined by θ(X,Y )=g(X,ϕY ) for any X, Y of TpM

2n+1. The
condition for an almost contact metric manifold being normal is equivalent to
vanishing of the (1, 2)-type torsion tensor Nϕ, defined by

Nϕ = [ϕ, ϕ] + 2dη ⊗ ξ,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ [2]. Recently in (see, [10], [11], [12],
[28]) almost contact metric manifold with the closed η and dθ=2η∧θ are studied
and they are called almost Kenmotsu manifolds. Obviously, a normal almost
Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be
characterized by

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,

for any vector fields X, Y . It is well known [27] that a Kenmotsu manifold
M2n+1 is locally a warped product I ×f N

2n where N2n is a Kähler manifold,
I is an open interval with coordinate t and the warping function f , defined by
f=cet for some positive constant c. Let us denote the distribution orthogonal to
ξ by D and defined by D=Ker(η)=Im(ϕ). In an almost Kenmotsu manifold,
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since η is closed, D is an integrable distribution. Let M2n+1 be an almost
Kenmotsu manifold. We denote by h= 1

2Lξϕ and l=R(·, ξ)ξ on M2n+1. The
tensor fields l and h are symmetric operators and satisfy the following relations
[29]:

hξ = 0, lξ = 0, tr(h) = 0, tr(hϕ) = 0, hϕ+ ϕh = 0,

(6) ∇Xξ = −ϕ2X − ϕhX (⇒ ∇ξξ = 0),

ϕlϕ− l = 2(h2 − ϕ2),

R(X,Y )ξ = η(X)(Y − ϕhY )− η(Y )(X − ϕhX)
+(∇Y ϕh)X − (∇Xϕh)Y,

for any vector fields X, Y . The (1, 1)-type symmetric tensor field h
′
=h ◦ ϕ

is anticommuting with ϕ and h
′
ξ=0. Also it is clear that (see, [32], [33], [34]):

(7) h = 0 ⇔ h
′
= 0, h

′2 = (k + 1)ϕ2 (⇔ h2 = (k + 1)ϕ2).

3. ξ belongs to the (k, µ)
′
-nullity distribution

Let X ∈ D be the eigenvector of h
′
corresponding to the eigenvalue λ.

Then from (7) it is clear that λ2=-(k + 1), a constant. Therefore k ≤ −1

and λ = ±
√
−k − 1. We denote by λ

′
and - λ

′
the corresponding eigenspaces

related to the non-zero eigenvalue λ and - λ of h
′
, respectively. Before going

to our main work, we recall theorem which will be used later on:

Theorem 3.1. ([10]) Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu man-

ifold such that ξ belongs to the (k, µ)
′
-nullity distribution and h

′ ̸= 0. Then

k < −1, µ=-2 and Spec (h
′
)={0, λ,−λ}, with 0 as simple eigenvalue and

λ=±
√
−k − 1. The distributions [ξ] ⊕ [λ]

′
and [ξ] ⊕ [−λ]

′
are integrable with

totally geodesic leaves. The distributions [λ]
′
and [−λ]

′
are integrable with

totally umbilical leaves. Furthermore, the sectional curvature are given as:

i) K(X, ξ) = k − 2λ if X ∈ [λ]
′
and K(X, ξ) = k + 2λ if X ∈ [−λ]

′
,

ii) K(X,Y ) = k − 2λ, if X,Y ∈ [λ]
′
,

iii) K(X,Y ) = k + 2λ, if X,Y ∈ [−λ]
′
,

iv) K(X,Y ) = −(k + 2), if X ∈ [λ]
′
, Y ∈ [−λ]

′
.

Theorem 3.2. ([10]) Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu man-

ifold such that ξ belongs to the (k,−2)
′
-nullity distribution and h

′ ̸= 0. Then

for any Xλ, Yλ,Zλ ∈ [λ]
′
and X−λ,Y−λ,Z−λ ∈ [−λ]

′
, the Riemannian curvature

tensor satisfies

i)R(Xλ, Yλ)Z−λ = 0,

ii)R(X−λ, Y−λ)Zλ = 0,

iii)R(Xλ, Y−λ)Zλ = (k + 2)g(Xλ, Zλ)Y−λ,
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iv)R(Xλ, Y−λ)Z−λ = −(k + 2)g(Y−λ, Z−λ)Xλ,

v)R(Xλ, Yλ)Zλ = (k − 2λ)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

vi)R(X−λ, Y−λ)Z−λ = (k + 2λ)[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].

Theorem 3.3. ([33]) Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu mani-

fold such that ξ belongs to the (k, µ)
′
-nullity distribution and h

′ ̸= 0. If n > 1,
then the Ricci operator Q of M2n+1 is given by

(8) Q = −2nid+ 2n(k + 1)η ⊗ ξ − 2nh
′

Moreover, the scalar curvature of M2n+1 is 2n(k-2n).

4. η-Ricci soliton on almost Kenmotsu manifolds

Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold such that ξ belongs

to the (k, µ)
′
-nullity distribution. Then from (6) we write Lξg in term of the

Levi-Civita connection ∇, as

(9)
(Lξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ)

= 2[g(X,Y )− η(X)η(Y )− g(ϕhX, Y )].

From (2) and (9), we obtain

(10) S(X,Y ) = −(1 + λ1)g(X,Y )− g(h
′
X,Y ) + (1− λ2)η(X)η(Y ),

(11) QX = −(1 + λ1)X + (1− λ2)η(X)ξ − h
′
X,

(12) S(X, ξ) = S(ξ,X) = −(λ1 + λ2)η(X),

(13) S(ξ, ξ) = −(λ1 + λ2).

From (8) and (13), we get

(14) λ1 + λ2 = −2nk,

for any X,Y ∈ χ(M).
This leads to the following:

Theorem 4.1. In an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g), n > 1

with ξ belongs to the (k, µ)
′
-nullity distribution and h

′ ̸= 0 admitting η-Ricci
soliton (g, ξ, λ1, λ2) then λ1 + λ2=-2nk.

With the help of the theorem 4.1, we have the following corollary

Corollary 4.2. An almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with ξ

belongs to the (k, µ)
′
-nullity distribution and h

′ ̸= 0 admitting Ricci soliton is
always expanding.
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The generalized quasi-conformal curvature Cq tensor in an almost Kenmotsu

manifold (M2n+1, ϕ, ξ, η, g) with ξ belongs to the (k, µ)
′
-nullity distribution

bearing η-Ricci soliton (ξ, g, λ, µ), reduces to

Cq(X,Y )Z = R(X,Y )Z +

{
(a+ b)(1 + λ1) +

cr

2n+ 1
(
1

2n
+ a+ b)

}
{g(Y, Z)X − g(X,Z)Y }+ a{g(h

′
X,Z)Y − g(h

′
Y, Z)X}

+b{g(X,Z)h
′
Y − g(Y, Z)h

′
X}

+a(1− λ2){η(Y )η(Z)X − η(X)η(Z)Y }
+b(1− λ2){g(Y, Z)η(X)− g(X,Z)η(Y )}ξ,(15)

where equations (4), (10) and (11) are used.

5. ξ-Generalized quasi-conformally flat almost Kenmotsu mani-
fold

In this section we discuss ξ-generalized quasi-conformally flat on (M2n+1, ϕ,

ξ, η, g) with ξ belongs to the (k, µ)
′
-nullity distribution bearing η-Ricci soliton.

Now, we recall the following definition:

Definition 5.1. An almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with ξ

belongs to the (k, µ)
′
-nullity distribution is said to be ξ-generalized quasi-

conformally flat if Cq(X,Y )ξ=0 on M2n+1.

In view of (1) and (15), we have

Cq(X,Y )ξ = {k + a(2− λ2) +
cr

2n+ 1
(
1

2n
+ a+ b) + b+ (a+ b)λ1}

[η(Y )X − η(X)Y ] + (µ− b)[η(Y )h
′
X − η(X)h

′
Y ].

(16)

With reference to the definition 5.1 and putting h
′
X=X and h

′
Y=Y in (16),

we obtain

{k + a(2− λ2) +
cr

2n+1 (
1
2n + a+ b) + b+ (a+ b)λ1

+(µ− b)}[η(Y )X − η(X)Y ] = 0.
(17)

Again substituting X=h
′
X in (17) and use of (7), we get

±
√
k + 1{k + a(2− λ2) +

c(k−2n)
2n+1 (1 + 2an+ 2bn)

+b+ (a+ b)λ1 + (µ− b)}η(Y )ϕX = 0,

for any X,Y ∈ M2n+1. It is obvious that
Case (i)

√
k + 1=0, that is, k=-1. Dileo and Pastore [10] proved that in almost

Kenmotsu manifold with ξ belongs to the (k, µ)
′
-nullity distribution if k=-1,

then h
′
=0 and the manifold is locally a wrapped product of an almost Kähler

manifold and an open interval. Thus k=-1, contradicts our hypothesis h
′ ̸= 0.
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Case (ii) k ̸= 1, than we have

{k + a(2− λ2) +
c(k−2n)
2n+1 (1 + 2an+ 2bn)

+b+ (a+ b)λ1) + (µ− b)} = 0.

Thus we can state the following theorem:

Theorem 5.2. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold

with ξ belongs to the (k, µ)
′
-nullity distribution admitting η-Ricci soliton sat-

isfies Cq(X,Y )ξ = 0. Then

Curvature condition Remarks on λ1, λ2

R(X,Y )ξ=0 k = −µ
P (X,Y )ξ=0 λ1 + λ2 = −(1 + n+ nµ)
C(X,Y )ξ=0 2λ1+λ2 = −2n(k+µ−1)−µ(2n−1)−3

E(X,Y )ξ=0 k = −2n(1+µ)
2n−1

Ĉ(X,Y )ξ=0 2λ1 + λ2 = (k + µ)[1− 4n]− 4
H(X,Y )ξ=0 2nλ1 + λ2 = −[4n(k + µ) + 2(1 + n)]

6. ϕ-Generalized quasi-conformally semi-symmetric almost Ken-
motsu manifold (M2n+1, ϕ, ξ, η, g) with (k, µ)

′
-nullity distribution

bearing η-Ricci soliton

We consider ϕ-generalized quasi-conformally semi-symmetric η-Ricci soliton on
(M2n+1, ϕ, ξ, η, g) with ξ belongs to the (k, µ)

′
-nullity distribution. Then

Cq · ϕ = 0.

Which is equivalent to

(18) Cq(X,Y )ϕZ − ϕ(Cq(X,Y )Z) = 0.

Fix Z=ξ in (18), we obtain

(19) ϕ(Cq(X,Y )ξ) = 0.

From (16) and (19), we have{
k + a(2− λ2) +

cr
2n+1 (

1
2n + a+ b) + b+ (a+ b)λ1

}
(η(Y )ϕX − η(X)ϕY )

+(µ− b){η(Y )ϕ(h
′
X)− η(X)ϕ(h

′
Y )} = 0.

(20)

Again letting X=h
′
X in (20) and using (7), we get

±
√
k + 1 [(k + a(2− λ2) + b+ (a+ b)λ1)

+ c(k−2n)
2n+1 (1 + 2an+ 2bn))ϕ2Xη(Y ) + (µ− b)

√
k + 1η(Y )ϕX] = 0.

for any vector fields X, Y on M2n+1. Now, at this stage we have two cases

Case (i)
√
k + 1=0, that is, k=-1, it contradicts our hypothesis h

′ ̸= 0.
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Case (ii) k ̸= 1, then we get

[(k + a(2− λ2) + b+ (a+ b)λ1) +
c(k−2n)
2n+1 (1 + 2an+ 2bn))

ϕ2Xη(Y ) + (µ− b)
√
k + 1η(Y )ϕX] = 0.

This leads to the following:

Theorem 6.1. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold

with ξ belongs to the (k, µ)
′
-nullity distribution admitting η-Ricci soliton sat-

isfies Cq · ϕ = 0. Then

Curvature condition Remarks on λ1, λ2

R · ϕ=0 k = µ = 0
P · ϕ=0 λ1 + λ2 = −2(1 + nk), µ = 0

C · ϕ=0 2λ1+λ2 = −[ (k−2n)
2n+1 (1+2n)+k(2n−1)+3], µ = − 1

2n−1

E · ϕ=0 k = −1, µ = 0

Ĉ(X,Y )ξ=0 2λ1 + λ2 = (k + µ)[1− 4n]− 4
H(X,Y )ξ=0 2nλ1 + λ2 = −[4n(k + µ) + 2(1 + n)]

7. An almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with (k, µ)
′
-

nullity distribution bearing η-Ricci soliton satisfying Cq · S=0

We consider the condition Cq · S=0, in an almost Kenmotsu manifold with ξ

belongs to the (k, µ)
′
-nullity distribution admitting η-Ricci soliton. Precisely,

we prove the following results:

Theorem 7.1. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold

with ξ belongs to the (k, µ)
′
-nullity distribution bearing bearing η-Ricci soliton

under the restriction Cq · S = 0. Then M is

i) locally isometric to the Riemannian product of an (n+1)-dimensional man-
ifold with constant sectional curvature -4 and a flat n-dimensional manifold.

ii) locally isometric to the Riemannian product of an (n+1)-dimensional man-
ifold with constant sectional curvature -9 and n-dimensional manifold with
constant sectional curvature -1

iii) an η-Einstein manifold.

Proof. The condition (Cq(X,Y ) · S)(Z, V ) = 0 is equivalent to

(21) S(Cq(ξ, Y )ξ, V ) + S(ξ, (Cq(ξ, Y )V ) = 0.

Also from (8), (13), (14) and (16) we have

(22)

S(Cq(ξ, Y )ξ, V ) = {k + a(2− λ2) + b+ (a+ b)λ1

+ c(k−2n)
2n+1 (1 + 2an+ 2bn)}[2nkη(Y )η(V )− S(Y, V )]

+(µ− b)S(V, h
′
Y ).
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Also,

(23)

S(ξ, (Cq(ξ, Y )V ) = k[2nkg(Y, V )− 2nkη(Y )η(V )]

+
{
(a+ b)(1 + λ1) +

c(k−2n)
2n+1 (1 + 2an+ 2bn)

}
[2nkη(Y )η(V )− 2nkg(Y, V )]− 2ang(h

′
Y, V )

−b(1− λ2)[2nkη(Y )η(V )− 2nkg(Y, V )].

Using (22) and (23) in (21), we get

(24)

{
k + a(2− λ2) + b+ (a+ b)λ1 +

c(k−2n)
2n+1 (1 + 2an+ 2bn)

}
[2nkη(Y )η(V )− S(Y, V )] + (µ− b)S(V, h

′
Y )

+2nk2[g(Y, V )− η(Y )η(V )] + 2nkµg(h
′
Y, V )

+2nk
{
(a+ b)(1 + λ1) +

c(k−2n)
2n+1 (1 + 2an+ 2bn))

}
[η(Y )η(V )− g(Y, V )]− 2ang(h

′
Y, V )

−2nkb(1− λ2)[η(Y )η(V )− g(Y, V )] = 0.

On substituting Y=h
′
Y in (24) and using (8), we obtain

(25)
(k + 2)(k + 5)[{−k + a(1 + λ2)− (µ− b) + {(a+ b)(1 + λ1)}
S(h

′2Y, V ) + {2nk(k − b(1 + λ2) + 2n(kµ− a)}g(h′2Y, V )] = 0.

With the help of (7), equation (25) reduces to

(k + 1)(k + 2)(k + 5)[−pS(Y, V )− qg(Y, V )
+(2nkp+ q)η(Y )η(V )] = 0,

where p = −k+ a(1+ λ2)− (µ− b) + (a+ b)(1+ λ1), q = 2nk(k− b(1+ λ2) +
2n(kµ− a), for any vector fields Y , V on M2n+1.

Now, we discuss the following cases. [−λ]
′

Case (i) (k + 1)=0, that is, k=-1. Then according to Dileo and Pastore [10],

it contradicts our hypothesis h
′ ̸= 0.

Case (ii) k ̸= −1, (k + 2)=0, that is, k=-2 then λ=1. So from Theorem 3.2,
we get

R(Xλ, Yλ)Zλ = −4[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = 0,

for any vector field

Xλ, Yλ, Zλ ∈ [λ]
′

and
X−λ, Y−λ, Z−λ ∈ [−λ]

′
.

Also µ = −2, thus from Theorem 3.1 we get K(X, ξ) = −4 for any X ∈ [λ]
′
and

K(X, ξ) = 0 for any X ∈ −λ′. Again from Theorem 7.1, we find K(X,Y ) = −4

for any X,Y ∈ [λ]
′
, K(X,Y ) = 0 for any X,Y ∈ [−λ]

′
. As is shown [10] that

the distribution [ξ] ⊕ [λ]
′
is integrable with totally geodesic leaves and the

distribution [−λ]
′
is integrable with totally umbilical leaves by H = −(1−λ)ξ,



580 Yadav, Mandal and Hui

where H is the mean curvature vector field for the leaves of [−λ]
′
immersed in

M2n+1. Thus λ = 1, then two orthogonal distributions [ξ]⊕ [λ]
′
and [−λ]

′
are

both integrable with totally geodesic leaves immersed in M2n+1. Therefore the
manifold M2n+1 is locally isometric to H2n+1(−4)× Rn.

Case (iii) k ̸= −1, k ̸= −2 and (k+5)=0, that is, k=-5 then λ=2. Thus from
Theorem 3.2, we get

R(Xλ, Yλ)Zλ = −9[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = [g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ],

for any vector field Xλ, Yλ, Zλ ∈ [λ]
′
and X−λ, Y−λ, Z−λ ∈ [−λ]

′
. Also we

conclude that µ = −2, thus in view of Theorem 3.1 that K(X, ξ) = −9 for any

X ∈ [λ]
′
and K(X, ξ) = −1 for any X ∈ [−λ]

′
. Again from Theorem 3.1, we

have K(X,Y ) = −9 for any X,Y ∈ [λ]
′
, K(X,Y ) = 2 for any X,Y ∈ [−λ]

′
. As

is shown [10] that the distribution [ξ]⊕ [λ]
′
is integrable with totally geodesic

leaves and the distribution [−λ]
′
is intregrable with totally umbilical leaves by

H = −(1 − λ)ξ, where H is the mean curvature vector field for the leaves of

[−λ]
′
immersed in M2n+1. So λ = 2, then two orthogonal distributions [ξ]⊕[λ]

′

and [−λ]
′
are both integrable with totally geodesic leaves immersed in M2n+1.

Therefore we can say that M2n+1 is locally isometric to H2n+1(−9)× Rn.

Case (iv) k ̸= −1, k ̸= −2 and k ̸= −5 then we have

S(Y, V ) = −q

p
g(Y, V ) +

(2nkp+ q)

q
η(Y )η(V ),

which means that the manifold is an η-Einstein manifold. This leads the proof
of the Theorem 7.1.

8. An almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with (k, µ)
′
-

nullity distribution bearing η-Ricci soliton satisfying ((ξ ∧S X) ·
Cq)=0

In this section we discuss the condition ((ξ ∧S X) ·Cq)=0 on almost Kenmotsu

manifolds with the characteristic vector field ξ belongs to the (k, µ)
′
-nullity

distribution admitting η-Ricci soliton. First we prove the following theorem.

Theorem 8.1. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold

with the characteristic vector field ξ belongs to the (k, µ)
′
-nullity distribution

bearing η-Ricci soliton under the restriction ((ξ ∧S X) · Cq)=0. Then M2n+1

is locally isometric to the Riemannian product H2n+1(−4)× Rn.

Proof. The condition (( ξ ∧S X) · Cq) = 0 holds on M2n+1. Then we get

(26) ((ξ ∧S X) · Cq)(Y, Z)U = 0,
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for any X,Y, Z, U ∈ χ(M). The equation (26) equivalent to

(27)

S(X,Cq(Y, Z)U)ξ − S(ξ, Cq(Y, Z)U)X − S(X,Y )Cq(ξ, Z)U
+S(ξ, Y )Cq(X,Z)U − S(X,Z)Cq(ξ, Z)U + S(ξ, Y )Cq(X,Z)U
−S(X,Z)Cq(Y, ξ)U + S(ξ, Z)Cq(Y,X)U − S(X,U)Cq(Y, Z)ξ

+S(ξ, U)Cq(Y, Z)X = 0.

Taking the inner product of (27) with ξ, we obtain
(28)

S(X,Cq(Y, Z)U)− S(ξ, Cq(Y, Z)U)η(X)− S(X,Y )η(Cq(ξ, Z)U)
+S(ξ, Y )η(Cq(X,Z)U)− S(X,Z)η(Cq(ξ, Z)U) + S(ξ, Y )η(Cq(X,Z)U)
−S(X,Z)η(Cq(Y, ξ)U) + S(ξ, Z)η(Cq(Y,X)U)− S(X,U)η(Cq(Y, Z)ξ)

+S(ξ, U)η(Cq(Y, Z)X) = 0.

Using (8), (15) and (16), for U=ξ, equation (28) reduces to
(29) {

(k + a(2− λ2) + b+ (a+ b)λ1) +
c(k−2n)
2n+1 (1 + 2an+ 2bn))

}
[S(X,Y )η(Z)− S(X,Z)η(Y )] + (µ− b)[S(X,h

′
Y )η(Z)− S(X,h

′
Z)η(Y )]

+S(ξ, ξ)[{(k + a(2− λ2) + b+ (a+ b)λ1 +
c(k−2n)
2n+1 (1 + 2an+ 2bn))}

{g(Y, Z)η(X)− g(X,Z)η(Y )}+ a{g(h′
X,Z)η(Y )− g(h

′
Y, Z)η(X)}] = 0.

For fix Z=ξ in (29), using (12) and (13), we obtain

(30)

{
(k + a(2− λ2) + b+ (a+ b)λ1) +

c(k−2n)
2n+1 (1 + 2an+ 2bn)

}
[S(X,Y )− 2nkη(X)η(Y )] + (µ− b)[S(X,h

′
Y ] = 0.

Let X,Y ∈ [λ]
′
and keeping in mind (8), we get from (30) that

(31)
2n(1 + λ){(k + a(2− λ2) + b+ (a+ b)λ1)

+ c(k−2n)
2n+1 (1 + 2an+ 2bn)}+ 2nλ(µ− b)(1 + λ) = 0.

Next, for X,Y ∈ [−λ]
′
in (30) and using (8) we obtain

(32)
−2n(1− λ){(k + a(2− λ2) + b+ (a+ b)λ1)

+ c(k−2n)
2n+1 (1 + 2an+ 2bn)}+ 2nλ(µ− b)(1− λ) = 0.

With the help of (31) and (32), we have

4n(λ− 1){(k + a(2− λ2) + b+ (a+ b)λ1)

+ c(k−2n)
2n+1 (1 + 2an+ 2bn) + λ(µ− b)} = 0.

Now, there are following case arises
Case(i) If λ=1, then k=-2. So by the Theorem 3.1 and Theorem 3.2, it is clear
that M2n+1 is locally isometric to the Riemannian product Hn+1(−4)× Rn.
Case(ii) If λ ̸= 1 then we get

{(k + a(2− λ2) + b+ (a+ b)λ1)

+ c(k−2n)
2n+1 (1 + 2an+ 2bn) + λ(µ− b)} = 0.

This leads the proof of the Theorem 8.1
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Precisely, one can also prove the following results:

Corollary 8.2. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold

with ξ belongs to the (k, µ)
′
-nullity distribution bearing η-Ricci soliton under

the restriction ((ξ ∧S X) · Cq)=0. Then

Curvature condition Remarks on λ1, λ2

((ξ ∧S X) ·R)=0 k = −µ
((ξ ∧S X) · P )=0 λ1 + λ2 = −2n(k + µ)− 2
((ξ ∧S X) · C)=0 λ1 + λ2 = [ 1n − n]{2n(k + µ+ 1) + µ+ 2n+1

2n−1} − 2

((ξ ∧S X) · E)=0 k = −[1 + µ{1 + 1
2n}]

((ξ ∧S X) · C̃)=0 −2(λ1 + λ2) = (2n− 1)(k + µ) + 5
((ξ ∧S X) ·H)=0 −(2λ1 + λ2) = −2[(nk + nµ)− 2]

9. An example of almost Kenmotsu manifold with (k, µ)
′
-nullity

distributions admitting an expanding η-Ricci soliton

We consider a 5-dimensional differentiable manifold

M5 = {(x, y, z, u, v) ∈ R5 | (x, y, z, u, v) ̸= (0, 0, 0)},

where (x, y, z, u, v) denote the standard coordinate in R5. Let e1, e2, e3, e4, e5
are the vector fields in R5 which satisfies [10]

[e1, e2] = −2e2, [e1, e3] = −2e3, [e1, e4] = 0, [e1, e5] = 0,

[ei, ej ] = 0, where i, j = 2, 3, 4, 5.

We define the Riemannian metric g by

g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = g(e5, e5) = 1.

g(e1, ei) = g(ei, ej) = 0, for i ̸= j; i, j = 2, 3, 4, 5.

Let the 1-form η be η(Z) = g(Z, e1) for any Z ∈ χ(M5). Let ϕ be the (1, 1)-
tensor field given by

ϕ(e1) = 0, ϕ(e2) = e4, ϕ(e3) = e5, ϕ(e4) = −e2, ϕ(e5) = −e3.

In view of linearity properties of ϕ and g, we have

ϕ2X = −X + η(X)e1, η(e1) = 1, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for arbitrary vector fields X,Y ∈ χ(M5). Moreover,

h
′
e1 = 0, h

′
e2 = e4, h

′
e3 = e3, h

′
e4 = −e4, h

′
e5 = e5.

We recall the Koszul’s formula as

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ])
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for arbitrary vector fields X,Y, Z ∈ χ(M5). With the help of Koszul’s formula
we have

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = e1,

∇e2e1 = 2e2, ∇e2e2 = −2e1, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = 0,

∇e3e1 = 2e3, ∇e3e2 = 0, ∇e3e3 = −2e1, ∇e3e4 = 0, ∇e3e5 = 0,

∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = 0, ∇e4e5 = 0,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0.

It is notice that ∇Xξ = −ϕ2X+h
′
X for ξ=e1. Thus the manifold is an almost

contact metric manifold with the almost contact structure (ϕ, η, ξ, g) such that
dη=0 and dθ=2η ∧ θ, so that the manifold is an almost Kenmotsu manifold.
Also, the curvature tensors

R(e1, e2)e1 = 4e2, R(e1, e2)e2 = −4e1 = R(e1, e3)e3, R(e1, e3)e1 = 4e3,

R(e1, e4)e1 = 0, R(e1, e4)e4 = 0, R(e1, e5)e1 = 0, R(e1, e5)e5 = 0,

R(e2, e3)e2 = −4e3, R(e2, e3)e3 = −4e2, R(e2, e4)e2 = 0 = R(e2, e4)e4,

R(e2, e5)e2 = 0, R(e2, e5)e5 = 0, R(e3, e4)e3 = 0, R(e3, e4)e4 = 0,

R(e3, e5)e3 = 0, R(e3, e5)e5 = 0, R(e4, e5)e4 = 0, R(e4, e5)e5 = 0.

It is clear that the characteristic vector field ξ-belongs to the (k, µ)
′
-nullity

distribution with k=-2 and µ=-2. The Ricci tensors S is given by

(33) S(e1, e1) = S(e2, e2) = S(e3, e3) = −8, S(e4, e4) = S(e5, e5) = 0.

In case of η-Ricci soliton given by (10), it is sufficient to verify that

(34) S(ei, ei) = −(1 + λ1)g(ei, ei)− g(h
′
ei, ei) + (1− λ2)η(ei)η(ei),

for all i = 1, 2, 3, 4, 5. From (34), we can easily find that

(35) S(e2, e2) = −(1 + λ1)g(e2, e2).

In view of (33) and (35), we get λ1=7. Also, from (34) we have

(36) S(e1, e1) = −(1 + λ1)g(e1, e1)− g(h
′
e1, e1) + (1− λ2)η(e1)η(e1),

Keeping in mind λ1=7, from (36), we obtain λ2=1. Thus, the structure

(g, ξ, 7, 1) is an η-Ricci soliton in an almost Kenmotsu manifold with (k, µ)
′
-

nullity distributions. At this stage λ1=7, i.e., λ1 > 0 it means η-Ricci soliton
is an expanding in nature. This verifies our Theorem 4.1.

With reference to this example and the Theorem (see, Dileo, and Pastore [10]),
we conclude that

Theorem 9.1. There exist a 5-dimensional almost Kenmotsu manifold with
(k,−2)

′
-nullity distribution with h

′ ̸= 0 which is locally isometric to the warped
product Hn+1(k − 2λ)×f Rn or Bn+1(k + 2λ)×f ′ Rn, where, f=ce(1−λ)t and

f
′
=će(1+λ)t, with c, ć positive constants.
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