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A NOTE ON (k,)-ALMOST KENMOTSU MANIFOLDS

SUNIL KUMAR YADAV*, YADAB CHANDRA MANDAL, AND SHYAMAL
KumARr Hur

Abstract. The present paper deals with the study of generalized quasi-
conformal curvature tensor inside the setting of (k, ,u)l-almost Kenmotsu
manifold with respect to n-Ricci soliton. Certain consequences of these
curvature tensor on such manifold are likewise displayed. Finally, we
illustrate some examples based on this study.

1. Introduction

The idea of k-nullity distribution was started by Gray [15] and Tanno [31]
in the study of Riemannian manifolds (M, g), which is defined for any p € M
and k € R as follows

Ny(k)={Z e T,M : R(X,Y)Z =k[g(Y,2)X — g(X, Z)Y]}

for any X, Y € T, M, where T,, M denotes the tangent vector space of M at any
point p € M and R denotes the Riemannian curvature tensor of type (1,3).
Blair, Koufogiorgos and Papantoniou [1] introduced a generalized notion of the
k-nullity distribution, known as (k, p)-nullity distribution on a contact metric
manifold (M?"*1 ¢ & n,g), which is defined for any p € M and k,pu € R as
follows:

Np(k,p) ={Z € T,M : R(X,Y)Z = k[g(Y, 2)X — g(X, Z2)Y]
+ulg(Y, Z)hX — g(X, Z)hY]}

1
where h = 5135(]5 and £ denotes the Lie derivative.

In (see, [10], [11], [12]) Dileo and Pastore introduced the notion of (k, z) -nullity
distribution. Moreover, generalized notion of the k-nullity distribution on an
almost Kenmotsu manifold (M2t ¢, €, n,g), is defined for any p € M2+t
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and k, ; € R as follows:

. Np(k,p) ={Z € T,M : R(X,Y)Z = k[g(Y, Z)X — g(X, Z)Y]
@) +ulg(Y, Z2)W' X — (X, Z)h'Y]},

where h'=h o ¢.
A Ricci soliton is a generalization of an Einstein metric. In a Riemannian
manifold (M, g), the metric g is called a Ricci soliton if [16]

1
52vg+5+)\1g = 0,

where £ is the Lie derivative, S the Ricci tensor, V' a complete vector field
on M and )A; is a constant. Compact Ricci solitons are the fixed points of the
Ricci flow % g=-25 projected from the space of metrics onto its quotient modulo
diffeomorphisms and scalings, and often arise as blow-up limits for the Ricci
flow on compact manifolds. The Ricci soliton is said to be shrinking, steady and
expanding if \; is negative, zero and positive respectively. A Ricci soliton with
V=0 is reduced to Einstein equation. During the last two decades, the geometry
of Ricci solitons have been the focus of attention of many mathematicians (see,
[5], [6], [7], [8], [9], [13], [17]-[24], [26]). It has became more important after
Perelman applied Ricci solitons to solve the long standing Poincaré conjecture
posed in 1904.
The n-Ricci soliton (£, g, A1, A2) is the generalization of the Ricci soliton (&, g, A1)
and is defined as [6]

(2) £5g+25+2)\1g+2/\2n®n20,

where A\ is a real constant.
Thereafter, Ricci solitons and 7-Ricci solitons in contact metric manifolds have
been studied by various authors such as S. K Yadav et. al (see, [37], [38], [39],
[40], [41], [42], [43]) and many others.
Recently, Yano and Sawaki [35], Baishya et al. [4] introduced and studied
generalized quasi-conformal curvature tensor C, in the context of N(k,pu)-
manifold. The generalized quasi-conformal curvature tensor Cj is defined for
an n-dimensional manifold as
3)

Co(X,Y)Z ="2[{1+ (n—1)a—b} — {1+ (n—1)(a+b)}C(X,Y)Z

+[1-b+(n—-1)a E(X,Y)Z+ (n—-1)(b—a)P(X,Y)Z
+2=L (e~ 1){1+ (n—1)(a+b)}C(X,Y)Z,

for all X,Y,Z € x(M), where the scalars (a, b, ¢) being real constants and the
symbols C, E, P and C stand for conformal, concircular, projective and con-
harmonic curvature tensors respectively. Thus the generalized quasi-conformal
curvature tensor C, can be characterized as, Riemann curvature tensor R if

(a,b,c) = (0,0,0), conformal curvature C' [14] if (a,b,c) = (— — 1),

n—2’ n—27

concircular curvature tensor E [36] if (a,b,c¢) = (0,0, 1), projective curvature
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tensor P [36] if (a,b,c) = ( L0, O) conharmonic curvature tensor C' [25]
if (a,b,¢)

( L, -1 O) and m—projective curvature tensor H [30] if

= n—2’ n-=27
(a,b,c) ( 2n 5~ 5o 2,0). Thus the equation (3) reduces
Co(X,Y)Z = R(X,Y)Z +alS(Y, 2)X — S(X, Z)Y] + blg(Y, Z)QX
1
0 -6 2)QV] - L (2t 0) (V. 2)X - g(X. 2)Y].
where S, @ and r denotes as usual meaning on M respectively.
The above works motivate us to study generalized quasi-conformal curvature

tensor in the domain of (k, 1) -almost Kenmotsu manifold with respect to 7-
Ricci soliton.

2. Almost Kenmotsu manifolds

A differentiable (2n + 1)-dimensional manifold M is said to have a (¢, &, n)-
structure or an almost contact structure, if it admits a (1, 1)-tensor field ¢, a
characteristic vector field £ and a 1-form 7 satisfying ( see, [2], [3]):

(5) P> =-T+n®E nE) =1,

where I denote the identity endomorphism. Also ¢ = 0 and o¢ = 0 both can
be derived from (5) easily. If a manifold M with a (¢, £, n)-structure admits a
Reimannian metric g such that

(¢X,9Y) = g(X,Y) = n(X)n(Y),
for any vector fields X, Y of T, M?"*1 then M is said to have an almost contact
structure (¢,£,n,g). The fundamental 2-form 6 on an almost contact metric
manifold is defined by 0(X,Y)=g(X,¢Y) for any X, Y of T,M?"*'. The
condition for an almost contact metric manifold being normal is equivalent to
vanishing of the (1, 2)-type torsion tensor Ny, defined by

Ny = [, 9] +2dn @&,

where [¢, @] is the Nijenhuis torsion of ¢ [2]. Recently in (see, [10], [11], [12],
[28]) almost contact metric manifold with the closed n and d=2nA0 are studied
and they are called almost Kenmotsu manifolds. Obviously, a normal almost
Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be
characterized by
(Vx)Y = g(¢X,Y)E —n(Y)pX,

for any vector fields X, Y. It is well known [27] that a Kenmotsu manifold
M7+ is Jocally a warped product I x f N** where N" is a Kdhler manifold,
I is an open interval with coordinate ¢ and the warping function f, defined by

f=ce? for some positive constant c. Let us denote the distribution orthogonal to
¢ by D and defined by D=Ker(n)=Im($). In an almost Kenmotsu manifold,
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since 7 is closed, D is an integrable distribution. Let M?"*+! be an almost
Kenmotsu manifold. We denote by h:%,ﬂggzﬁ and I=R(-,£)¢ on M?"*1. The
tensor fields [ and h are symmetric operators and satisfy the following relations
[29]:
hé =0,16 =0, tr(h) =0, tr(hp) =0, he + oh =0,
(6) Vx&=—¢’X — ohX (= Vet = 0),
plo — 1 =2(h* — ¢,
R(X,Y)§ = n(X)(Y — ohY) — n(Y)(X — ohX)
+(Vyoh)X — (Vxoh)Y,

for any vector fields X, Y . The (1, 1)-type symmetric tensor field h'=hoo

is anticommuting with ¢ and h'¢=0. Also it is clear that (see, [32], [33], [34]):

(7) h=0&h =0, K2 =(k+1)¢* (& h? = (k+1)¢?).

3. £ belongs to the (l@p),-nullity distribution

Let X € D be the eigenvector of n corresponding to the eigenvalue A.
Then from (7) it is clear that \>=-(k + 1), a constant. Therefore k < —1
and A = £v/—k — 1. We denote by A and - A’ the corresponding eigenspaces
related to the non-zero eigenvalue A and - A of h/, respectively. Before going
to our main work, we recall theorem which will be used later on:

Theorem 3.1. ([10]) Let (M?"*1 ¢, £ 1, g) be an almost Kenmotsu man-
ifold such that & belongs to the (k, ) -nullity distribution and h' # 0. Then
k < —1, u=-2 and Spec (h,):{(),)\,—)\}, with 0 as simple eigenvalue and
A=++v/—k — 1. The distributions [¢] & [\ and [¢] ® [-)\] are integrable with
totally geodesic leaves. The distributions [\ and [-)] are integrable with
totally umbilical leaves. Furthermore, the sectional curvature are given as:

i) K(X,&) =k—2\ if X € [\ and K(X,¢) =k + 2\ if X € [-)]
i) K(X,Y)=k—2\, if X,Y €[\,
i) K(X,Y)=k+2\, ifX,Y € [-A],
) K(X,Y)=—(k+2), if X e[\ ,Y €[-A].

Theorem 3.2. ([10]) Let (M?"*1 ¢, &, 1, g) be an almost Kenmotsu man-

ifold such that & belongs to the (k, —2)/—nu111'ty distribution and h' # 0. Then

for any X, Yy\,Zy € [)\]/ and X_,,Y_y\,Z_\ € [—)\],, the Riemannian curvature
tensor satisfies

’
3

i)R(XX7Y)\)Z—)\ = 07
i)R(X_2,Y_\)Zr = 0,
i) R(Xx, Y_x)Zx = (k +2)g(Xx, Z0)Y_»,
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W)R(XA, Y \)Z_x = —(k+2)9(Y_x, Z_2) X,
V)R(X ), YA)Zx = (k= 20)[g(Ya, Z0) X — (X, Z2) YA,
’UZ')R(X,)\,Y,,\)Z,)\ = (/ﬂ + 2)\)[9(Y,)\, Z,)\)X,,\ - g(X,)\, Z,)\)Y,)\].

Theorem 3.3. ([33]) Let (M?" ! ¢,&,n,g) be an almost Kenmotsu mani-
fold such that ¢ belongs to the (k, yu) -nullity distribution and h' # 0. If n > 1,
then the Ricci operator Q of M?"*1 is given by

(8) Q = —2nid + 2n(k + 1)n® £ — 2nh’

Moreover, the scalar curvature of M*"*! is 2n(k-2n).

4. n-Ricci soliton on almost Kenmotsu manifolds

Let (M?"+1 ¢, £,7m,g) be an almost Kenmotsu manifold such that & belongs
to the (k, u) -nullity distribution. Then from (6) we write Leg in term of the
Levi-Civita connection V, as

) (Leg)(X,Y) = g(VxE,Y) + g(X, Vy &)
=2[g(X,Y) —n(X)n(Y) — g(¢phX,Y)].

From (2) and (9), we obtain
(10)  S(X,Y)=—(1+A)g(X,Y) - g(h' X,Y) + (1 = A)n(X)n(Y),

(11) QX = —(1+M)X + (1= Xo)n(X) —h' X,
(12) S(X, 6) = S(va) = _()‘1 + )\Z)U(X)a
(13) S(6,8) = —(A + A2).

From (8) and (13), we get

(14) AL+ Ao = —2nk,

for any X,Y € x(M).
This leads to the following:

Theorem 4.1. In an almost Kenmotsu manifold (M?"*1,¢.&,n,9), n > 1
with € belongs to the (k, ) -nullity distribution and k' # 0 admitting n-Ricci
soliton (g, g, A1, /\2) then \1 + Ao=-2nk.

With the help of the theorem 4.1, we have the following corollary

Corollary 4.2. An almost Kenmotsu manifold (M?" ! ¢ & n,g) with &
belongs to the (k, ,u)/—nullity distribution and h’ # 0 admitting Ricci soliton is
always expanding.
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The generalized quasi-conformal curvature C; tensor in an almost Kenmotsu
manifold (M2, ¢ £ n,g) with ¢ belongs to the (k,u) -nullity distribution
bearing n-Ricci soliton (€, g, A, 1), reduces to

cr 1
2n+1(% —|—a—|—b)}
{9(Y,2)X — g(X,2)Y} + a{g(h' X, 2)Y — g(h'Y, Z) X}
+b{g(X, 2)L'Y — g(Y, Z)h' X}
+a(l = X){n(Y)n(2)X —n(X)n(2)Y'}
(15) +o(1 = A){g(Y, 2)n(X) = g(X, Z)n(Y)}E,
where equations (4), (10) and (11) are used.

Cy(X,)Y)Z = R(X)Y)Z+ {(a +0)(1+ M) +

5. £-Generalized quasi-conformally flat almost Kenmotsu mani-
fold

In this section we discuss &-generalized quasi-conformally flat on (M27+1 ¢,
&, 1n,g) with € belongs to the (k, u)/—nullity distribution bearing n-Ricci soliton.
Now, we recall the following definition:

Definition 5.1. An almost Kenmotsu manifold (M?"*1 ¢, &, n,g) with &
belongs to the (k,u),—nulh'ty distribution is said to be £-generalized quasi-
conformally flat if Cy(X,Y)E=0 on M?"+1,

In view of (1) and (15), we have

cr 1
2n+1(%+a+b)+b+(a+b)>\1}

(V)X —n(X)Y] + (u—b)[n(Y)h' X —n(X)h'Y].

Ci( X, V)¢ = {k+a(2—X2)+

(16)
With reference to the definition 5.1 and putting h X=X and A Y=Y in (16),
we obtain
{k+a2=22) + 3255 +a+b) +b+ (a+ b
(= 0)}n(Y)X —n(X)Y] =0.
Again substituting X=h'X in (17) and use of (7), we get

£VE+ 1{E +a(2 — X2) + SE=20 (1 + 2an + 2bn)
b+ (a+b0)A + (n—b)In(Y)pX =0,
for any X,Y € M?"+1, It is obvious that
Case (i) vk + 1=0, that is, k=-1. Dileo and Pastore [10] proved that in almost
Kenmotsu manifold with £ belongs to the (k, ,u)l—nullity distribution if k=-1,
then h'=0 and the manifold is locally a wrapped product of an almost Kahler
manifold and an open interval. Thus k=-1, contradicts our hypothesis B #0.

(17)
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Case (ii) k # 1, than we have

{k+a(2 - A2) + 2520 (1 + 2an + 2bn)

+b+ (a+b)A1) + (n—0)} =0.
Thus we can state the following theorem:

Theorem 5.2. Let (M*"*1 ¢ £ 1,9) be an almost Kenmotsu manifold

with £ belongs to the (k, ,u)l—nullity distribution admitting n-Ricci soliton sat-
isfies Cy(X,Y )€ = 0. Then

Curvature condition Remarks on A1, Ao

R(X,Y)¢=0 k=—u

P(X,Y)¢=0 M+ d=—1+n+np)

C(X,Y)¢{=0 22 +de=-2n(k+pu—1)—pu2n—-1)-3
B(X,Y)é=0 = —2nte)

C(X,Y)E=0 22X + X0 = (k+ p)[l —4n] — 4
H(X,Y)éE=0 21 + Ao = —[4n(k + u) + 2(1 + n)]

6. ¢-Generalized quasi-conformally semi-symmetric almost Ken-
motsu manifold (M?"*+1 ¢ ¢ 7, g) with (k,p),-nullity distribution
bearing 7-Ricci soliton

We consider ¢-generalized quasi-conformally semi-symmetric 7-Ricci soliton on

(M2+L ¢ € 1, g) with € belongs to the (k, 1) -nullity distribution. Then
Cy-0=0.

Which is equivalent to

(18) Co(X,Y)9Z — $(Cy(X,Y)Z) = 0.

Fix Z=¢ in (18), we obtain

(19) B(Cy(X,V)E) = 0.

From (16) and (19), we have

{k+a(2—)\2)+ s (55 +a+b) +b+(a+b)A1}
(20) (Y)eX —n(X)¢Y)
+(p = 0){n(Y)o(h X) —n(X)p(h Y)} =0.
Again letting X=h'X in (20) and using (7), we get
+VE+T[(k+a2—X)+b+ (a+ b))
+E=2) (1 4 2am + 26n))* X (V) + (1 — b)VE + 1n(Y)pX] = 0.

for any vector fields X, Y on M?"t!. Now, at this stage we have two cases
Case (i) vk + 1=0, that is, k=-1, it contradicts our hypothesis B 0.
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Case (ii) k # 1, then we get

[(k+a(2 = A2) + b+ (a+b)Ar) + “2=20(1 4 2an + 2bn))
P*Xn(Y) + (p = b)VE + In(Y)eX] = 0.

This leads to the following;:

Theorem 6.1. Let (M*"*1 ¢ £ n,g) be an almost Kenmotsu manifold
with & belongs to the (k, u) -nullity distribution admitting n-Ricci soliton sat-

isfies Cy - ¢ = 0. Then

Curvature condition

Remarks on A1, Ao

R-$=0 k=p=0
P-¢$=0 M +r=—200+nk),n=0

C - 6=0 2\+de = —[G20 (142n) +5(2n—1)+3], p =515
E-¢$=0 k=-1,p=0

C(X,Y)E=0 A 4+ do = (k4 p)[1 —4n] — 4

H(X,Y)E=0 201 + Ay = —[4n(k + p) + 2(1 + n)]

7. An almost Kenmotsu manifold (M?"*! ¢ ¢ n,g) with (k,u)'-
nullity distribution bearing 7-Ricci soliton satisfying C, - S=0

We consider the condition Cy - S=0, in an almost Kenmotsu manifold with &
belongs to the (k,u) -nullity distribution admitting n-Ricci soliton. Precisely,
we prove the following results:

Theorem 7.1. Let (M*"*1 ¢,£,m,9) be an almost Kenmotsu manifold
with £ belongs to the (k, u)/—nuﬂity distribution bearing bearing n-Ricci soliton
under the restriction Cq - S = 0. Then M is
i) locally isometric to the Riemannian product of an (n + 1)-dimensional man-
ifold with constant sectional curvature -4 and a flat n-dimensional manifold.
ii) locally isometric to the Riemannian product of an (n + 1)-dimensional man-
ifold with constant sectional curvature -9 and n-dimensional manifold with
constant sectional curvature -1
iii) an n-FEinstein manifold.

Proof. The condition (Cq(X,Y) - 5)(Z,V) = 0 is equivalent to
(21) S(Cy(EY)EV) + S(E, (Cy(&,Y)V) = 0.
Also from (8), (13), (14) and (16) we have
S(CEY)EV)={k+al2—X)+b+ (a+ b\

c(k—2n
(22) +

(14 2an + 2bn)}2nkn(Y)n(V) = S(Y, V)]

+(p = b)S(V,AY).
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Also,
S(&,(Cq(&Y)V) = k[2nkg(Y,V) — 2nkn(Y)n(V)]
(23) + {(a +0)(1+ A1) + LE=20 (1 4+ 2an + 2bn)}

[2nkn(Y)n(V) — 2nkg(Y, V)] — 2ang(h'Y, V)
—b(1 — A2)[2nkn(Y)n(V) — 2nkg(Y,V)].
Using (22) and (23) in (21), we get

{k +a(2—Aa) + b+ (a+ b + L2 (1 + 2an + 2bn)}

2nkn(Y)n(V) = SV, V)] + (n = 0)S(V, h'Y)
+2nk2[g(Y, V) = n(Y)n(V)] + 2nkpg(h Y, V)
+onk {(a +0)(1+ M) + <E=20 (1 4 9am + 2bn))}

2n+1
(Y )n(V) = g(Y, V)] — 2ang(h'Y, V)
—=2nkb(1 = A2)[n(Y)n(V) — g(Y, V)] = 0.

On substituting Y=h"Y in (24) and using (8), we obtain
(B +2)(k+5)[{—k+a(l+A2) = (p—0) +{(a+b)(1+ A1)}
S(K2Y, V) + {2nk(k — b(1 + X3) + 2n(ku — a)}g(h'2Y, V)] = 0.
With the help of (7), equation (25) reduces to
(k+1)(k+2)(k +5)[-pS(Y, V) — qg(Y, V)
+(2nkp + q)n(Y)n(V)] = 0,
where p=—k+a(l+X2) —(p—0b)+(a+b)(1+ A1), g=2nk(k—b(1+X2)+
2n(kp — a), for any vector fields Y, V on M2n+1,

Now, we discuss the following cases. [—)\]I

Case (i) (k+ 1)=0, that is, k=-1. Then according to Dileo and Pastore [10],
it contradicts our hypothesis n #0.

Case (ii) k # —1, (k+ 2)=0, that is, k=-2 then A=1. So from Theorem 3.2,
we get

(25)

R(X )\, Y\)Z\ = —4[g(Yx, Zx) X\ — 9(Xx, Z))Y)],

R(X_\,Y_\)Z_x =0,

for any vector field
Xo, Yo 2y €

and

X_\Y.nZ_ye[-A.
Also 1 = —2, thus from Theorem 3.1 we get K (X, £) = —4 for any X € [\ and
K(X,£) =0forany X € —N. Again from Theorem 7.1, we find K(X,Y) = —4
for any X,Y € [\, K(X,Y) =0 for any X,Y € [—)\]/. As is shown [10] that
the distribution [¢] @ [A]" is integrable with totally geodesic leaves and the
distribution [—)\]/ is integrable with totally umbilical leaves by H = —(1 — A)¢,
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where H is the mean curvature vector field for the leaves of [-A] immersed in

M?"+1 Thus A = 1, then two orthogonal distributions [¢] & [A\]" and [—)\]I are
both integrable with totally geodesic leaves immersed in M?2"*!. Therefore the
manifold M?"*! is locally isometric to H2"+1(—4) x R™.

Case (iii) k£ # —1, k # —2 and (k + 5)=0, that is, k=-5 then A=2. Thus from
Theorem 3.2, we get

R(Xx,Y\)Zx = —9[g(Yx, Zx) Xx — 9(X, Zx)YA],

R(X_\,Y_\)Z_x=[9(Y_x, Z_x)X_x — g(X_x, Z_))Y_1],

for any vector field X,,Y,,Z, € [)\]/ and X_,,Y_,,Z_) € [—)\],. Also we
conclude that p = —2, thus in view of Theorem 3.1 that K (X, &) = —9 for any
X e[\ and K(X,¢) = —1 for any X € [—)\]/. Again from Theorem 3.1, we
have K(X,Y) = —9 forany X,Y € [\, K(X,Y) = 2 forany X,Y € [-A] . As
is shown [10] that the distribution [¢] @ [A]" is integrable with totally geodesic
leaves and the distribution [—)\], is intregrable with totally umbilical leaves by
H = —(1 — M\, where H is the mean curvature vector field for the leaves of
[—)\]/ immersed in M2"1. So A = 2, then two orthogonal distributions [¢] @[]’
and [f/\}/ are both integrable with totally geodesic leaves immersed in M2"+1,
Therefore we can say that M2 is locally isometric to H?"1(—9) x R™.
Case (iv) k # —1, k # —2 and k # —5 then we have

Sy = ~Lgviv) + mem,

which means that the manifold is an n-Einstein manifold. This leads the proof
of the Theorem 7.1. O

8. An almost Kenmotsu manifold (M2"+! ¢ ¢ 1, g) with (k,pu)'-
nullity distribution bearing 7-Ricci soliton satisfying ((£ Ag X) -

Cq)=0

In this section we discuss the condition ((§ Ag X)-Cq)=0 on almost Kenmotsu
manifolds with the characteristic vector field £ belongs to the (k, u)l—nullity
distribution admitting n-Ricci soliton. First we prove the following theorem.

Theorem 8.1. Let (M*"*1 ¢ £ n,g) be an almost Kenmotsu manifold
with the characteristic vector field £ belongs to the (k, ,u)l—nullity distribution
bearing n-Ricci soliton under the restriction ((§ As X) - Cy)=0. Then M?"+!
is locally isometric to the Riemannian product H?"*1(—4) x R™.

Proof. The condition ((£ As X) - C,) =0 holds on M?"*1. Then we get
(26) ((5 As X) 'Cq>(Ya Z)U:07
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for any X,Y, Z, U € x(M). The equation (26) equivalent to

S(X,Cq(Y, 2)U)§ = S(&,Cq(Y, 2)U)X — S(X,Y)Cy(§, Z)U

+5(£,Y)C (X Z)U — S(X, Z) Co(§, 2)U + S(€,Y)Cy(X, Z2)U

—=S(X,Z)Cq(Y, U + S(§, 2)Cy (Y, X)U — S(X,U) q(Y»Z)
LS(6,T)C, (Y, Z)X = 0.

Taking the inner product of (27) with &, we obtain
(28)

(27)

S(X, Co(Y, 2)U) = 5(&, Cy (Y, 2)U)n(X)
+5(6,Y)n(Cy (X, 2)U) = S(X, Z)n(Cy ¢,
—=S5(X, Z)n(Cq (Y, )U) + 5(§, Z)n(C (Y,

+5(5, U)n(C. (Y 2)X) =

Using (8), (15) and (16), for U=¢, equation (28) reduces to
(29)

{(k a2 A2) + b+ (a+b)Ar) + =2 (1 4 2an + 2bn))}
[S(X.Y)n(Z) = S(X, Z)n(Y)] + (n— b)[S(X,h'Y)n(Z) — S(X,h Z)n(Y)]
+S(E {4+ a(2—X2) +b+ (a+b)A + e(k—2n) (1+ 2an + 2bn))

]

{9V Zn(X) — 90X, ZIn(Y)} + afg(h' X, Zn(¥) — ('Y, Zyn(X)}] =

For fix Z=¢ in (29), using (12) and (13), we obtain

{(k +a(2 = o)+ b+ (a+b)M) + L2 (1 4 2am + 2bn)}
[S(X,Y) = 20kn(X)n(Y)] + (n — D)[S(X,h'Y] = 0.
Let X,Y € [\ and keeping in mind (8), we get from (30) that

2n(1+ A{(k+a(2—X2) +b+ (a+b)A1)
020 (14 2am + 26n) } + 20X (1 — b)(1 + A) = 0.

Next, for X,Y €[] in (30) and using (8) we obtain

=2n(1 = N{(k+a(2—X2) +b+ (a+b)A)
+C(§n_ff) (14 2an +2bn)} + 2nA(pn — b)(1 — X) = 0.

With the help of (31) and (32), we have

dn(A—D{(k+a(2=X2) +b+ (a+b)A1)

+4=2m) (1 4 2an + 2bn) + A — b)} = 0.

Now, there are following case arises

Case(i) If A=1, then k=-2. So by the Theorem 3.1 and Theorem 3.2, it is clear
that M?"*! is locally isometric to the Riemannian product H"*!(—4) x R™.
Case(ii) If A # 1 then we get

{(k + a(2 — )\2) + b + (Cl + b)>\1)

+<0=2) (14 2an + 2bn) + A(u — b)} = 0.

This leads the proof of the Theorem 8.1 O

(30)

(31)

(32)
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Precisely, one can also prove the following results:

Corollary 8.2. Let (M?*"*1 ¢, & n,g) be an almost Kenmotsu manifold

with & belongs to the (k, u) -nullity distribution bearing n-Ricci soliton under
the restriction ((§ As X) - Cq)=0. Then

Curvature condition Remarks on Ay, Ao

((EAs X) - R)=0 k=—p

((gAsX)P):O /\1+)\2=—2n(k+u)—2

(Ens X)-C)=0 M+tX=E-—n2nk+p+1)+p+22H} -2
(ENs X)-E)=0 k=—[1+p{l++}]

(EAs X)-C)=0 —2(M1+A2)=02n—1)(k+pu)+5

(€hs X) - H)=0 “2N + Aa) = —2[(nk + ngs) — )

9. An example of almost Kenmotsu manifold with (k:,,u)'-nullity
distributions admitting an expanding n-Ricci soliton
We consider a 5-dimensional differentiable manifold
M = {(z,y,2,u,v) € R® | (z,y, z,u,v) # (0,0,0)},

where (z,7, z,u,v) denote the standard coordinate in R®. Let ey, s, €3, €4, €5
are the vector fields in R® which satisfies [10]

[e1,ea] = —2eq, [e1,e3] = —2e3, [e1,e4] =0, [e1,e5] =0,
lei,ej] =0, wherei,j=2,3,4,5.
We define the Riemannian metric g by
gle1,e1) = glez, €2) = gles, e3) = gles, e4) = g(es, €5) = 1.

g(el7ei) = g(ei,€j> = 07 fO’I" { 7é ]?Zvj = 27374a5'
Let the 1-form n be n(Z) = g(Z,e1) for any Z € x(M?). Let ¢ be the (1,1)-
tensor field given by

ple1) =0, dle2) = ea, dles) =es, dlea) = —ea, d(es) = —es.
In view of linearity properties of ¢ and g, we have
¢*X = —X +n(X)er,n(er) = 1,9(¢X,9Y) = g(X,Y) — n(X)n(Y)
for arbitrary vector fields X,Y € x(M?®). Moreover,
h,el =0, hleg = ey, h/eg = ez, h,e4 = —ey, h,es = es.
We recall the Koszul’s formula as
29(VxY,2) = Xg(Y,2)+Yg(X,Z) - Zg(X,Y)
—9(X, Y, Z]) = g(Y, [X, Z]) + 9(Z, [ X, Y])
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for arbitrary vector fields X,Y,Z € x(M?3). With the help of Koszul’s formula
we have

Ve,e1 =0, Veea=0, Vges=0, Vges=0, Ves=e,
Ve,e1 =2e2, Ve,ea=—2e;, Vge3=0, Vg,es=0, Vges=0,
Vese1 =2e3, Veea =0, Vees=—-2e, Veges=0, Vees =0,
Vese1 =0, Veea=0, Vges=0, V.es=0, Vge5=0,
Ve,e1 =0, Veea=0, Vce3=0, Vges=0, Ves=0.
It is notice that Vx& = —¢2X + h' X for &é=e;1. Thus the manifold is an almost
contact metric manifold with the almost contact structure (¢, 7, &, g) such that
dn=0 and df=2n A 0, so that the manifold is an almost Kenmotsu manifold.
Also, the curvature tensors
R(e1,ez)er = 4des, R(eq,ea)es = —4dey = R(eq, e3)es, R(eq, e3)e; = 4des,
R(e1,eq)er =0, R(e1,eq)eq =0, R(eg, es5)e;r =0, R(eq,es)es =0,
R(ea, e3)es = —4des, R(ea, e3)es = —dea, R(ea,e4)ea = 0 = R(eq, eq)ey,
R(ez,es5)e2 = 0, R(ea, e5)es = 0, R(es, eq)es = 0, R(es, eq)eq =0,
R(es,es5)es =0, R(es, e5)es = 0, R(eq, e5)eqs = 0, R(eq, e5)es = 0.

It is clear that the characteristic vector field &-belongs to the (k,u)/-nullity
distribution with k=-2 and p=-2. The Ricci tensors S is given by

(33)  S(er,er) = S(e2,e2) = S(es, e3) = =8, S(eq,eq) = S(es, e5) = 0.

In case of n-Ricci soliton given by (10), it is sufficient to verify that

(34) S(eirer) = —(1+ M)gles e) — g(h es, e5) + (1= Aa)n(es)m(es),
foralli=1,2,3,4,5. From (34), we can easily find that

(35) 5(62,62) = —<1+)\1>g<€2,62).

In view of (33) and (35), we get \1=7. Also, from (34) we have

(36)  S(er,er) = —(1+ M)gler,e1) — g(h er, ex) + (1= Aa)n(en)m(er),
Keeping in mind A\;=7, from (36), we obtain A;=1. Thus, the structure
(9,€,7,1) is an n-Ricci soliton in an almost Kenmotsu manifold with (k:,u)/—

nullity distributions. At this stage A\1=7, i.e., Ay > 0 it means n-Ricci soliton
is an expanding in nature. This verifies our Theorem 4.1.

With reference to this example and the Theorem (see, Dileo, and Pastore [10]),
we conclude that

Theorem 9.1. There exist a 5-dimensional almost Kenmotsu manifold with
(k,—2) -nullity distribution with h= # 0 which is locally isometric to the warped
product H" ! (k — 2X) x; R™ or B"*!(k + 2)) x ;» R", where, f=ce'=Mt and

/ 7’ . ’ o, .
f :ce(l‘“‘)t, with c, ¢ positive constants.
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