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Abstract 

 
The utilization of UAVs in various fields has led to the development of flying ad hoc network 
(FANET) technology. In a network environment with highly dynamic topology and frequent 
link changes, the traditional routing technology of FANET cannot satisfy the new 
communication demands. Traditional routing algorithm, based on geographic location, can 
“fall” into a routing hole. In view of this problem, we propose a geolocation routing protocol 
based on multi-agent reinforcement learning, which decreases the packet loss rate and routing 
cost of the routing protocol. The protocol views each node as an intelligent agent and evaluates 
the value of its neighbor nodes through the local information. In the value function, nodes 
consider information such as link quality, residual energy and queue length, which reduces the 
possibility of a routing hole. The protocol uses global rewards to enable individual nodes to 
collaborate in transmitting data. The performance of the protocol is experimentally analyzed 
for UAVs under extreme conditions such as topology changes and energy constraints. 
Simulation results show that our proposed QLGR-S protocol has advantages in performance 
parameters such as throughput, end-to-end delay, and energy consumption compared with the 
traditional GPSR protocol. QLGR-S provides more reliable connectivity for UAV networking 
technology, safeguards the communication requirements between UAVs, and further promotes 
the development of UAV technology. 
 
 
Keywords: FANET, GPSR, dynamic environment, multi-agent reinforcement learning, 
local information. 
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1.  Introduction  

In recent years, unmanned aerial vehicles (UAVs) have been used widely in military, civil 
and other fields, such as search and rescue in disaster areas, battlefield situational awareness, 
smart cities, scientific expeditions, etc. as shown in Fig. 1, a robust communication network 
is an important foundation for UAVs to complete complex, collaborative tasks [1-5]. The 
introduction of mobile ad hoc networks expanded the research scope of UAV communication 
networks and, thus, flying ad hoc networks (FANET) were developed [6-8]. MANET routing 
protocols have matured after several years of development. The routing protocols in FANET 
should be able to adapt to the dynamic changes of the network. The stability of routing, traffic 
load, and transmission scheduling is the basis for achieving a mobile tolerable network. 
FANET routing protocols should take into account the application, deployment, service nature, 
and mobility model of UAV. The routing protocols in FANET originate from the following 
two One is the proposed routing suitable for the FANET scenario, and the other is the 
reasonable improvement of routing protocol based on MANET, the latter is more common. In 
recent years, many improved routing protocols have been gradually developed around node 
mobility awareness and MAC layer and network layer traffic load awareness. They improve 
the existing MANET routing protocols by appropriately defining mobility characteristics and 
closely linking mobility-aware results, QoS(Quality of Service) requirements, and network 
effectiveness assessment. To solve the problem of link instability caused by the rapid change 
of FANET topology, the improvement of routing protocols is gradually developed in the 
direction of node mobility awareness and cross-layer optimization, and self-adaptation. 
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Fig. 1. A structure of FANET’s application  

 
With the development of geolocation technology, the miniaturization and cost reduction of 

positioning equipment, coupled with the importance of precise geolocation for military and 
civilian applications, has led to the widespread equipping of GPS in UAVs. The acquisition of 
geographic location information is a basic function of a UAV, because almost all UAV systems 
need geolocation information to realize path planning, especially in a UAV swarm [9]. 
Geolocation-based routing protocols can be divided into two categories according to the 
presence or absence of a route discovery process: location-assisted routing protocols and 
location-based routing protocols. Location-assisted routing protocols are similar to routing 
protocols that do not use location information and look for available routes before sending 
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data. The role of location information is that it is used in the route discovery process to limit 
the propagation range of route requests, replacing the normal flooding sending method with 
limited flooding and significantly reducing the network routing overhead. Location-based 
routing protocols do not require route discovery and choose the forwarding path based on the 
location information of network nodes when sending packets, and only need neighbor 
information and information about itself and destination nodes to complete the forwarding of 
packets, and the forwarding strategy can adopt greedy forwarding, limited flooding, 
hierarchical forwarding, etc. 

The typical representatives of geolocation-based routing protocols are LAR, GeoCast, and 
DREAM protocols. One scheme of LAR protocol limits the sending range of route requests to 
a rectangular area or a sector, and the other one selects the next hop based on the principle that 
it is closer and closer to the destination node. The above two approaches effectively reduce the 
number of route control packets and the number of forwarding and lower the routing overhead. 
Greedy perimeter stateless routing (GPSR) [10] is a widely used protocol in the category of 
geolocation-based routing protocols that requires neither knowledge of the entire network 
topology nor routing discovery when used, making it ideal for use in a FANET. GPSR works 
mainly through two forwarding models, that is, under normal circumstances, the greedy mode 
is used to deliver data as close as possible to the destination node, but when an empty region 
is encountered, the mode switches to a peripheral one to forward the data. 

Traditional geographic location routing considers only the distances between nodes when 
forwarding and, thus, not other attributes of neighbor nodes (for example, the quality of the 
link between one node and a neighbor node, and the traffic load of the neighbor). The node 
closest to the destination node is selected (in a “greedy” manner) when deciding on the next 
hop; long-term transmission reliability and feasibility are not considered. It is easy to fall into 
a local optimum and thus cause transmission to fail. When GPSR enters the peripheral 
forwarding mode, data packets must traverse the entire network to attain the destination node, 
which greatly increases the network delay and the routing packet loss rate, posing major 
challenges when seeking to apply GPSR to FANET.  

RL-based Routing 
Protocol

Security-based

Geographic-based

Zone-based

Topology-based

Hierarchical

TDDRL
RAVR

TDRL-RP
QTAR
PBQR
Q-LBR
QGRID
RLZRP

ADOPEL
VRDRT

PP-AODV
PFQAODV

ARPRL
RSAR

QLAODV
PIRP

ALCA
CURV
RLRC  

Fig. 2.  Reinforcement learning-based routing protocol for FANET 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021                           4247 

Thus, Gunduz [11,12] and others have used machine-learning to design routing algorithms. 
The basic idea of reinforcement learning-based routing algorithm is to detect each path based 
on the information feedback effect of reinforcement learning and finally find an optimal path. 
For scenarios where the environment is constantly changing, reinforcement learning can 
continuously adapt to the surrounding environment. Fig. 2 shows the common reinforcement 
learning-based FANET routing protocols. The most common reinforcement learning-based 
routing algorithm is the Q-learning-based routing algorithm. The basic components of Q-
learning are intelligence, behavior, reward and punishment policy, and state. The best behavior 
policy in each state is selected by rewarding and punishing the state transfer after the 
intelligence takes action. 

There are many routing techniques based on reinforcement learning. Li et al. [13]developed 
the QGrid protocol; Q-learning employs an on-vehicle self-organizing network (VANET) for 
geographic routing. This divides an area into several grids, each with a unique Q value. The 
agent selects the grid of largest Q value among adjacent grids, and then the node closest to the 
target in the selected grid. However, the Q table of QGrid must be trained offline; this requires 
a large amount of trajectory data. If these are lacking for a certain area, it is difficult to train 
the table. Jung et al. [14]developed the QGeo geographic routing protocol; this is also based 
on Q learning. QGeo uses a flexible discount factor to select reliable links, calculates the Q 
value for each received node, and makes routing decisions based on that Q value. However, it 
is difficult to apply QGeo to a general self-organizing network because the size of the Q value 
table increases linearly with the number of target nodes.  

The intelligent routing algorithm of the Q-learning algorithm mostly models the packet 
forwarding process in the network with MDP, and later transforms the routing optimization 
problem into a model-based Q-learning problem, and constructs the intelligent routing 
algorithm based on it. Due to the characteristics of MDP modeling and model-based Q learning 
itself, the optimization objectives are mainly performance evaluation metrics that can be 
accumulated hop-by-hop, such as delay, throughput, and energy consumption. The intelligent 
routing algorithm designed by using the model-based Q learning method itself can self-adapt 
to the dynamically changing network environment, and because its MDP model is known, its 
decision process has better interpretability compared with other deep learning-based methods, 
so it has wider application in the application scenarios where the network state is highly 
volatile, such as FANET networks. However, it is very difficult to explicitly build MDP 
models for routing optimization problems with higher input-output dimensions and more 
complex optimization objectives, and in addition, the packet-level routing control approach 
commonly used by existing Q-learning-based routing optimization methods can hardly meet 
the high-performance requirements of backbone networks, so the application scenarios of 
existing Q-learning-based intelligent routing algorithms still have great limitations. 

We use multi-agent reinforcement learning to process information on higher-dimensional, 
network state characteristics; the agent is sensitive to network changes and thus makes 
appropriate decisions. We term our multi-agent, geolocation-based, Q-learning routing 
algorithm Q-learning-based geographic routing (QLGR). We combine the trial-and-error 
approach of reinforcement learning with dynamic programming. Compared to the traditional 
routing strategy (based on fixed model-solving), QLGR is data-driven and spontaneously 
explores suitable model parameters. While considering the quality and load capacity of the 
next hop node, the protocol selects the best neighboring node based on geolocation information, 
and considers the data backhaul during packet transmission, which is based on punishment. 
The main work in this paper is as follows: 
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(1)We propose a geolocation routing algorithm, QLGR, based on multi-agent 
reinforcement learning, with each node alone maintaining an intelligent routing table. 

(2)We propose a distributed evaluation method for neighboring nodes, which includes 
only information about the local nodes, namely link quality, node energy and packet queue 
length. 

(3)By contrast, we also introduce a global reward to reflect network performance, that is, 
the distance between the packet and the destination node, which makes all nodes cooperate to 
complete data transmission. 

(4)Finally, to reduce the overhead of the routing algorithm, we propose an optimization 
method that adaptively adjusts the period required to broadcast a “HELLO” packet. 

The remainder of this paper is as follows. In Section 2, we introduce research related to 
geolocation routing based on reinforcement learning. In Section 3, we model the various parts 
of the multi-intelligent routing system. In Section 4, we present the implementation of the 
routing algorithm and the optimization method of the proposed protocol. In Section 5, we 
discuss validation of the model by testing. In Section 6, we present a discussion and our 
conclusions. 

2.  Related Work 
Location-based routing protocols typically base their routing selection on the location 

information between local and destination nodes. In both location-aided routing [15] and the 
distance routing-effect algorithm for mobility [16], the network overhead is reduced by 
delimitation of the expected zone and the request zone around the target node. Furthermore, 
GPSR [17] not only reduces the connection establishment delay but also reduces the control 
overhead by combining greedy and peripheral modes. 

Hunag [18] proposed an energy-aware dual-path geographic routing protocol to recover 
routing from routing holes more effectively. This protocol adaptively utilizes location 
information, residual energy and energy consumption characteristics to make routing decisions. 
Moreover, it extends such routing to three-dimensional sensor networks to provide energy-
aware routing for routing hole detouring. This protocol is applicable to resource-constrained 
wireless sensor networks with routing holes. 

Kasana [19] proposed a new geographic routing protocol based on cat swarm optimization 
for the unique features of vehicle-mounted self-organizing networks (such as high mobility, 
low bandwidth and restricted mobility), with the purpose of finding the optimal effective 
strategy to select the next forwarding vehicle in a highly dynamic vehicle environment. A 
fitness function to optimize the impact of various parameters on the selection of the next 
forwarding vehicle was suggested.  

In FANET application scenarios, the high-speed movement of nodes will inevitably lead to 
frequent changes in network topology, making it difficult for traditional routing algorithms to 
adapt, while the application of reinforcement learning to routing algorithms can solve such 
problems [20].  

As early as 1993, Boyan et al. [21] first applied Q-learning to routing protocols. They 
describe the routing and forwarding process as a Markov decision process (MDP), in which 
each node, as an intermediate state in the MDP, selects the next hop as the action, and the 
delay cost of each hop as the reward and punishment value for feedback. 

There are roughly three types of applications of reinforcement learning in communication 
network: Q-routing, multi-agent and partially observable Markov decision routing. Hasan [22] 
introduced the application of traditional routing and reinforcement learning models to wireless 
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network routing, identified the routing challenges associated with different types of distributed 
wireless networks, and described the advantages of applying reinforcement learning to routing. 
The proposal of the ns3-gym toolkit [23] further boosted the application of reinforcement 
learning to routing algorithms. The toolkit is implemented by connecting the OpenAI Gym 
toolkit to the ns-3 network simulator, greatly simplifying the complexity of using 
reinforcement learning to solve problems in the network domain; also, the framework is open 
source, so industry can easily extend it. 

Many literatures use multi-agent systems to solve network routing problems, such as[24-
27].In multi-agent learning, each router or network node is considered as an agent that can 
only observe the local environment information and act according to its own routing policy. 
Liang et al.[28] proposed a MARL-based approach called Distributed Value Function-
Distributed Reinforcement Learning (DVF-DRL) for routing in WSNs, which selects a next-
hop neighbor node that provides a lower end-to-end delay, taking into account the Q-value of 
its neighbor nodes, and therefore the communication performance of the whole network is 
considered. Elwhishi [29]et al. proposed a MARL-based delay-tolerant network routing 
scheme that increases the packet delivery rate as well as reduces the transmission delay. 

The robust link availability routing protocol [30] is an adaptive routing algorithm based on 
the gradient ascent algorithm to implement reinforcement learning. Treating each node as an 
independent agent, this algorithm adjusts policy parameters according to the global 
performance of the network, makes routing decisions, and determines the corresponding 
control behavior via the observed local state. Jung [14] proposed an adaptive routing model 
based on Q-learning to detect the movement degree of each node in the network, and proposed 
a new routing metric, QMetric. 

The literature [31] applies the DQN-routing algorithm in Deep Reinforcement Learning 
DRL to solve the routing problem, which combines the advantages of Q-routing and DQN. 
Each router is considered as an agent whose parameters are shared and updated simultaneously 
during the training process (centralized training), but it provides independent packet 
transmission instructions (decentralized execution). The literature [32] proposes a gating 
mechanism in which each communicating node adaptively prunes useless information in a 
broadband-constrained network. The literature [24] embeds deep neural networks into multi-
agent Q-routing based on Q-routing. Each router has an independent neural network that is 
trained without communicating with its neighbors and makes decisions locally. A multi-
intelligence framework is proposed to improve the performance of existing routing methods, 
and this framework enables each sensor node to build a cooperative set of neighbors based on 
past routing experience. 

Li [33] proposed an effective routing protocol for underwater sensor networks based on 
multi-agent reinforcement learning. It models the network as a distributed multi-agent system, 
then the residual energy and link quality are considered in the routing protocol design, to 
improve its adaptability to a dynamic environment and prolong the network life. In addition, 
Li proposed two optimization strategies to accelerate the convergence of reinforcement 
learning algorithms and, on this basis, provided a reward mechanism for distributed systems. 

Zeng [34] proposed a multi-agent reinforcement learning framework for adaptive routing in 
communication networks, which is based on real-time Q-learning and participant criticism. It 
works by providing a global feedback signal; the router (agent) operates independently but is 
able to understand the cooperative behavior necessary to reduce packet delivery time. The 
algorithm is robust to some dynamic changes in the network, and each agent learns adaptive 
strategies to route packets. 
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3. System Model 
In this section, we first describe the motivation for the research and then express the routing 

problem in a reinforcement learning model, and define the state space, action space, reward 
function and other elements in the Markov decision model. 

3.1 Problem description 
In the existing routing algorithms based on geolocation, such as the GPSR routing protocol, 

only the distance relationship between nodes is considered when routing and forwarding, 
without fully considering other attributes of neighboring nodes (link quality between nodes 
and their neighbors and information loads of those neighbors). Also, when the next hop is 
selected, only the nearest node to the destination node is greedily selected without long-term 
consideration of the reliability and feasibility of transmission, which can often lead to a locally 
optimal solution that results in transmission failure. As shown in Fig. 3, a source node, S, 
wants to send data to a destination node, D, compared with node n2, the distance between node 
n1 and source node S is closer, and according to the greedy rule, source node S will choose the 
route with the red arrow. But there is a large empty area between node n1 and destination node 
D, and no suitable next hop can be found. Therefore, the perimeter forwarding mode is 
triggered, and there is no other node that can be forwarded according to the right-hand rule or 
the left-hand rule, and the transmitted data will be sent back to the source node S. The source 
node S then selects the route with the green arrow, so the packet flow direction is: S->n1->S-
>n2->...->D. Because there is a hole effect in the geolocation-based routing algorithm, the 
routing algorithm makes the packet flow to node n1 and back to the source node, which 
increases the transmission delay of communication and also increases the work pressure on 
the source node S. 

S

n1

n2

D

 
Fig. 3. A case of a data packet being trapped in locally optimal transmission based on geolocation 

routing 
 

The traditional method used to discover routing voids in the network is to mark the void 
boundary nodes, and the study divides the void boundary into event boundary and network 
boundary, where the event boundary is given by the algorithm that detects the corresponding 
event and the network boundary is determined based on the routing topology of the network. 
The event boundary is obtained without complex algorithms, and the main problem faced is 
sensor data processing. The network boundary acquisition requires certain algorithm support 
and is mainly divided into geometry-based hole detection methods, statistics-based hole 
detection methods, and topology-based hole detection methods. These methods have high time 
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and space complexity as well as energy overhead. In this paper, based on the multi-intelligent 
reinforcement learning method, we use the multi-intelligent Q-learning algorithm to 
dynamically solve the routing path of the network Nash equilibrium by increasing the 
communication properties of nodes and intelligently and effectively avoid the routing into the 
hole region. Based on the method in this paper, node S can sense the state of neighboring nodes 
and directly select the n2 node as the next hop to directly bypass the hole region. 

3.2 System Framework 
In the method described in this section, the entire ad hoc network is constructed as a multi-

agent system to support the information exchange between nodes, and the value function 
algorithm is used to obtain the reward and punishment value for interacting with the 
environment, so as to learn the effective transmission mode. Due to environmental factors, it 
is typically difficult to get an accurate data model for FANET with highly dynamic nodes. 
Q-learning is a model-free reinforcement learning model that is widely used, based on a value 
function algorithm. We use Q-learning to iterate the values of neighbor nodes employing a 
traditional, geographical location routing algorithm. We maintain a neighbor-value Q table. In 
QLGR, each data packet writes the location of the target node into a header field during 
construction. Our routing algorithm thus employs both the distance to the destination node and 
the neighbor value weight when selecting the next hop node. As shown in Fig. 4, the 
framework consists mainly of node value evaluation and the routing decision. Next, we define 
the reinforcement learning-related elements. 
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Fig. 4. The proposed Q-learning-based geographic routing algorithm framework 
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3.3 Modeling 

3.3.1 Definitions of states and actions 
For a single-agent system, the state of the two communication nodes involved in the return 

function and the actions they take change only their own environment, without affecting other 
nodes [34]. For this reason, we construct a multi-agent system in this paper, to represent the 
cooperation between nodes, to send packets from source nodes to destination nodes. 

Before using reinforcement learning to optimize the routing algorithm, the routing decision 
problem should first be described as an MDP process. Let 1{ , , , }i nN n n n=    represent a 
set of nodes, in which they realize multi-hop communication through direct communication 
by themselves or relay through other nodes. The whole network is treated as an MDP 
interactive environment, and all nodes are regarded as independent agents. A single agent can 
only perceive part of the environment, so the partially observable MDP approach should be 
considered first [35]. The state of the node, t

is , is regarded as the state set, S , at the moment, 

t , for the data packet, p , in node, in . On this node, p is sent to the action set, iA , on in
which is the constituent node of the action for the next jump, and the action space selected by 

in can be defined as the set of neighbors of in : 

nbr { |  and Dis( , ) D_max and }.j j i jN n n N n n i j= ∈ < ≠                 (1) 

where Dis( , )i jn n  is the distance between two nodes, as the bytes of a HELLO maintenance 
data packet contain geographic information, the distances between nodes are obtained by 
subtracting the node coordinates. And D_max is the maximum communication distance 
between nodes. After the action is completed, the agent receives environmental returns, 
including local (LR) and global (GR) rewards. 

To achieve cooperation with neighbor nodes, when in makes routing decisions, the 
influence of the neighbor nodes' local returns and global returns on itself should be considered. 
To this end, in  needs to interact with the information of its neighbors to ensure that routing 
decisions can respond to the dynamic network promptly. In the QLGR routing protocol, 
periodically broadcast beacon data (HELLO message) can be used to inform the surrounding 
neighbor nodes of their location and LR and GR information. Furthermore, to control the 
broadcast HELLO message cycle, the adaptive HELLO time slot algorithm proposed in 
Section4 of this paper can be used to reduce the control message overhead in the network. 

3.3.2 Definitions of reward function 
In a single-agent system, each node only perceives its immediate environment and is 

unaffected by the actions of other agents. If all agents execute actions with their own optimal 
strategy, the network load may be unbalanced because, if multiple routes are relayed through 
a node, the network will be congested, thus shortening the network life. To evaluate the 
rationality of the strategy, the load capacity and link quality of the link task are considered in 
the LR. The ultimate purpose of routing and the transfer of packets to the destination node, or 
the next-hop node closer to it, is incorporated into the GR. To establish the LR, a node 
broadcasts a HELLO message to a neighboring node (the design of the HELLO message 
format is considered in a later section). The GR updates the Q-value with location information 
based on the message’s successful transfer. LR and GR are defined as follows: 
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LR: 

( , ) ( , ) (1 ) ( , ).QLR i j L i j L i jα α= + −                              (2) 

where ij N∈  means that j  is a neighbor node of i , 

 rec

totle

( , ) .Q
PL i j
P

=                                                       (3) 

len

len

( , ) 1 .DL i j
C

= −                                                         (4) 

( , )QL i j  represents the link quality, as a ratio, between the sending and receiving nodes, and

recP and totleP are the numbers of data packets received by the next hop node and of all data 
packets sent, respectively. ( , )L i j  represents the remaining load capacity of the normalized 

node, lenC represents the length of the cache queue, lenD represents the length of the existing 
data queue in the cache queue andα represents the weighting value of balancing load quality 
and the remaining load capacity. 

GR: The ultimate purpose of a routing decision is to choose the appropriate path to transmit 
a packet to a destination node, while the LR is used to measure the value of the neighboring 
node, which only gives feedback for the optimal next hop. However, whether this optimal next 
hop can send data packets to the destination node is unknown. Therefore, a global return value 
is needed to ensure the best possible effort to deliver the data to the next hop, closer to the 
destination node when forwarding it. GR was proposed by Li [36] to optimize the performance 
of the whole multi-agent system, to evaluate the multi-agent coordination in a continuous 
space state. In that study, it was first integrated into the agent routing algorithm as a quality of 
service metric to optimize the static network topology path decisions of multi-agent systems. 
Inspired by this, a GR function was designed to evaluate whether the next hop selected is 
closer to the destination node: 

1,              if 
( , ) .

0,           otherwise
ij N

GR i j
∈

= 


                                       (5) 

4 Geographic routing algorithm based on multi-agent reinforcement 
learning 

In this section, we analyze the two most important parts of the proposed routing algorithm, 
namely the node value assessment and the routing decision; then, we propose an optimization 
method for the routing overhead of the protocol; finally, we describe the implementation and 
flow of the routing protocol in detail. 

 
4.1 Neighbor node value assessment based on multi-agent Q-learning 
 

When defining an agent, an action is defined as sending a packet to a neighbor node. 
According to the definitions of conventional reinforcement learning, a reward value is 
obtained only after an action is performed and the Q-value is updated. However, in the 
dynamic network environment of a FANET, when no packets are sent, such a Q-value would 
be constant, which is obviously not appropriate. Therefore, receiving the HELLO message is 



4254                                                         Qiu et al.: QLGR: A Q-learning-based Geographic FANET Routing Algorithm 
 Based on Multi-agent Reinforcement Learning 

also regarded as an action, and the value of the neighboring node relative to another is 
evaluated by the attributes of the neighbor node in the HELLO message as the basis for 
updating the Q-value. 

Each node maintains a one-hop neighbor Q-table within its communication range, as listed 
in Table 1. The Q-value in the table entry is used as a routing decision weight, and its range 
of values is [0,1]. Also, to save storage space, only the surrounding active neighbors are saved, 
and a life span is set for the information about each neighbor, so that if no more HELLO 
messages are received from the node then, after a certain period of time, it is considered to 
have left the communication range of the node, with the information being deleted after the 
total of the three longest HELLO message slots. When a HELLO message is received from a 
new neighbor, this process begins for it and a Q-value is initialized. 

 
Table 1. Q-table Structure 

Neighbor 
nodes 

Destination Coordinate 
position 

Destination 

node 1d  

Destination 

node 2d  

… 

1n  
1.1.1.1 1 1 1, ,x y z< >  1 1( , )Q n d  1 2( , )Q n d  … 

2n  1.1.1.2 
2 2 2, ,x y z< >  2 1( , )Q n d  1 2( , )Q n d  … 

… … … … …  
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0

7
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ID(Self-increasing) Link Message Size
0

Cache Queue Length
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Data Queue Length

 
Fig. 5. Hello message format 

 
The HELLO message plays an important role in neighbor discovery and Q-value updates. 

The HELLO message should include not only the node location information but also the 
HELLO sequence number, message length, Q-table information, cache queue length and the 
length of the data queue that is already in the cache queue, as shown in Fig. 5. 

When the current node, i , receives the HELLO message sent by the neighbor node, j , it 
counts how many of these it has received and compares this with the message identity 
originally assigned by j . Through this self-added identity number, it can identify whether a 
HELLO message was lost and then calculate QL  according to (3). By a similar method, 
according to the cache and data queue lengths of the HELLO messages, the remaining load 
capacity of the neighbor node is calculated using (4). 

In accordance with the above information, it is easy to calculate the local reward, 
( , ) [0,1]LR i j ∈ using (2). Nodes with good link stability and strong residual load capacity 

obtain a greater LR.  
Each node is viewed as an agent; interactions among nodes affect the rewards for each node. 

Assume that iΠ includes all strategies of the i-th node (the set of all optional neighbors) and 
that * *

1( , , , )i nV s π π⋅⋅⋅ is the reward for the i-th node that balances all intelligence in the state s , 
where * ( )a sπ ∣  is the optimal strategy. Then, the optimal route of the entire network is the 
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Nash equilibrium strategy * * *
1 2( , , , )nπ π π⋅⋅⋅ of all agents. All agents 1,2, ,i n= ⋅⋅⋅ of state s S∈ , 

satisfy 
* * * * *
1 1( , , , , , ) ( , , , , , ),i i n i i nV s V sπ π π π π π⋅⋅⋅ ⋅ ⋅ ⋅ ≥ ⋅⋅ ⋅ ⋅ ⋅ ⋅                                 (6) 

Define the Q function of the i-th agent as ( , , )i i iQ s a −a , where 1 1 1{ , , , , , }i i i na a a a− − += ⋅⋅ ⋅ ⋅ ⋅ ⋅a
represents the actions of all agents except the i-th agent. Then, the Nash Q function of the i-th 
agent is: 

'

' ' * *
1( , , ) ( , , ) ( / s, , ) ( , , , )i i i i i i i i i n

s S

Q s a r s a p s a V sβ π π− − −
∈

= + ⋅⋅⋅∑a a a                      (7) 

where * *
1( , , )nπ π⋅⋅⋅ is the joint Nash equilibrium strategy and ( , , )i i ir s a −a  the instant reward of 

the i-th agent. The agent learns its Q value via repeated guessing from the time the game starts. 
At each time step t, agent i observes the current state, takes an action ia , and receives an instant 
reward ir . When action i−a is taken by other agents, and they are rewarded, the environmental 
state changes to 's . Next, agent i calculates the Nash equilibrium strategy ' '

1( ( ), , ( ))ns sπ π⋅⋅⋅

using the action value function ' '
1( ( ), , ( ))t t

nQ s Q s⋅ ⋅ ⋅ , the update rule of which is: 
1 '( , , ) (1 ) ( , , ) [ ( )]t t t t

i i i t i i i t i iQ s a Q s a r V sα α γ+
− −= − + +a a              (8) 

where tα is the learning rate and γ  the discount factor. According to that value, the 
corresponding Q-value of the neighbor node in the Q-table can be updated, and the estimated 
value of the link i  to j  can be calculated as follows: 

1

1
1 2

' , '

( , ) (1 ) ( , )

                   ( , ) ( , ) ( ', ) .
i

t t
i i

t t t

i N i j

Q j d Q j d

LR i j w V j d w V i d

α

α γ γ

+

+

∈ ≠

← −

  + + ⋅ ⋅ + ⋅ ⋅ 
  

∑
                   

(9) 
Where 

'
( , ) max ( ', ).

j

t t
jj N

V j d Q j d
∈

=                                           (10) 

'
( ', ) max ( ', ).

j

t t
ji N

V i d Q i d
∈

=                                           (11) 

( , )tV j d  and ( ', )tV i d  represent the state value functions of j  and other neighboring nodes, 
respectively, with respect to the destination node, d , which are used to estimate the joint value 
of j selected as the next hop and the transmission trend of surrounding nodes to d. 1w and 2w
are the weights of the two functions, which are set to 0.2 and 0.05, respectively, in the literature 
[33] to ensure that the algorithm performs well. 

It can be seen from (9) that the higher the link value between the neighbor and the current 
nodes, the higher the LR obtained according to the neighbor information in the HELLO 
message. Moreover, the Q-value also gives a better evaluation of this node after each iteration, 
which is in line with the design idea of selecting the next hop with stable and sufficient residual 
load capacity. When a node receives a HELLO message, as sent periodically by a neighbor 
node, it will maintain the Q-table of its evaluated neighbor nodes in real time. When data 
forwarding is needed, it will select the optimal neighbor node at that moment as the next hop 
by its evaluation of the values of its neighbor nodes and the location information of the 
destination node.  
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4.2 Routing decision based on geographical location 
 

Routing decisions are reflected in the current packets forwarded by nodes under a certain 
policy. In the previous section, we described the algorithm for evaluating the value of neighbor 
nodes by the QLGR protocol. When a node has the task of transmitting data, it must select the 
next hop for forwarding. At that time, the optimal next hop in the current state should be 
selected according to the information relayed to the node combined with the location 
information of the destination node, to ensure that the information can reach that node. To 
facilitate the maintenance and update of node information, the geographical location and 
Q-value execution are stored in a hash table. Compared with polling lookup, which has O(n) 
time complexity, a query method with constant time complexity is more conducive to 
shortening the packet forwarding delay. 

For the selection of the next hop, the value of the neighbor node should be considered on 
the basis of the proximity principle, based on the distance to the destination node. For this 
reason, the distance between the neighbor and the destination nodes is quantified, according 
to 

max

( , ) ( , ) 1

max,       ( , )( , )
0                 ,           otherwise

D i d D j d
r

i
e D i j rDis j d

−
− <= 


                              (12) 

where maxr  represents the communication radius of i and ( )D 
represents the Euclidean 

distance between two nodes: 
 

2 2 2( , ) ( ) ( ) ( ) .x x y y z zD i j i j i j i j= − + − + −                               (13) 

 
As can be seen by the use of the distances in (12), if j is further from d than i, then the 

probability of it being selected as the next hop is smaller. However, there is no operation that 
prohibits i from choosing a hop farther away from d, so the ability of the node to balance 
distance and transmission feasibility is retained. 

The Q-value corresponding to each neighbor node in the current node Q-table is taken as 
the weight of the distance quantification value, and the product of the two is defined as the 

discounted Q-value, ( , )Q j d . At the current node, QLGR adopts a softmax policy to select the 
node for the next hop forward. The softmax strategy is calculated as follows: 

 
( , )

( , ')

'

( | ) .

Q s a

Q s a

a A

ea s
e

τ

τ

π

∈

=

∑
                                            (14) 

 
where 0τ > is the temperature. Different to the balanced exploration in the strategy ε-greedy, 

in this softmax strategy, each Q-value is mapped exponentially, focusing on exploration of the 
neighbor nodes with better Q , so as to distribute the network traffic on different network 
nodes and avoid the network congestion caused by packets being concentrated. 
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After making a routing decision, it is necessary to reward the selection of this action 
according to the GR, that is, the associated Q-value is updated by calculation as follows: 

 
1

1

'

( , ) ( , ) [
           ( ', ) ( , )].max

i

t t
i i t

t
i

j N

Q j d Q j d GR
Q j d Q j d

α

γ

+
+

∈

← +

+ −                                     (15) 

After that, the subsequent forwarding nodes will gradually transmit the packets to d in 
accordance with the above principles. 

QLGR routing is conducted according to Algorithm1. When the protocol selects nodes, the 
value function is first calculated according to the local reward and the global reward, and the 
Q value is updated according to (15). If the neighbor node-set is not empty, the distance 
between the neighbor node and the destination node is quantified, and the probability of each 
alternative path can be calculated by multiplied corresponding Q value. 

 
Algorithm 1  Q-learning-based geographic routing algorithm 
Input：data pack p ，Current node c ， Set of neighbors nbrN  
Initialize: tableQ  
1 If packet p ’ destination node is c  then 
2  Return 
3 End if 
4 If packet p returned to c  then 
5  Update ( . , . )Q p last p des  with (12) and GR GR= −   
6 End if 
7 If ( )nbrN c ≠ ∅  then 

8  For all ( )i nbrn N c∈  do 

9   If . ip pre n=  then 
10    Continue; 
11   End if  
12   [ ] ( , . )* ( , . )i table i iP n Q n p des Dis n p des=   
13  End for 
14  softmax( )nextP P=   

15  Select next hop a  according to probability nextP  

16  Update ( , . )tableQ a p des  with (15) 
17 Else 
18  Select a  using GPSR’ Perimeter mode 
19 End if 
20  Output: Next hop a  

 
As long as we maximize the selection probability among the alternative paths, we can decide 

the best path for the next hop. If the neighbor node set is empty, the route enters the peripheral 
mode, and the route falls back to GPSR to perform route selection. When the data packet exits 
from the GPSR peripheral mode, the mode switches to the greedy mode again, and the QLGR 
algorithm is restored for routing. The complete flowchart of proposed QLGR algorithm as 
shown in Fig. 6. 

 
In summary, each node maintains a neighbor node value Q-table for the next hop that can 

reach d, and the size of the Q-table is determined by the numbers of next-hop neighbor nodes 
and previous destination nodes. The Q-table entries are maintained automatically when 
neighbor nodes are added or deleted, so the algorithm is robust in a multi-hop network 
environment. 
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Fig. 6. Flow chart of proposed QLGR algorithm 

 
4.3 Protocol optimization 
 

For a highly dynamic FANET, this scheme of periodically exchanging HELLO messages is 
insufficient to adapt to the changing network environment, because the selection of the 
HELLO message slot plays a decisive role in link discovery in geographically based routing 
protocols. The shorter this time slot, the faster the detection of new neighbors or link outages, 
but this generates a higher overhead and hinders the transmission of normal packets. 
Conversely, the longer the time slot, the lower the overhead, but this limits the ability to 
discover neighbors and detect a broken link. Therefore, in this section, we propose an 
optimization scheme, which the system can learn online and use to adjust adaptively the 
broadcast cycle of HELLO messages. 

The HELLO time slot adjustment problem is described as an MDP process with a state, 
, ,nbr load soltS s s s∈< > , where nbrs represents the change degree of neighbor nodes in the 

period of time step, t∆ , of the current node, as given by: 

1 .t t
nbr

num num
s

t
+ −

=
∆

                                                         (16) 

where tnum represents the number of nodes in the neighbor table; loads  represents the number 

of packets to be sent in the interface queue of a node; and solts  represents the length of the 
HELLO slot on the current node. 

How does a node change its perceived time slot in response to changes in the network 
environment? Reducing the time slot will improve the speed of sensing the neighbor nodes but 
will increase the network overhead. In the current paper, the action is set as: 
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1 .t t
H H aT T T+ = +                                                                   (17) 

where the value of aT is (+1000,0, 500)−  in milliseconds, with three possible actions 
concerning the broadcast HELLO cycle compared to the previous decision cycle, namely 
adding 1000 ms, remaining unchanged or decreasing it by 500 ms. 

To accomplish this, a measure of the positive and negative value of the return given by the 
environment needs to be defined, and thus we define the following utility function: 

- ( )+ ( ).Utility log C log Lα δ= × ×                            (18)  
where,C represents the change degree of neighbor nodes in t∆ , calculated as: 

1

.
t t
nbr nbrs s

C
t

+ −
=

∆
                                                        (19) 

L represents the information load capacity of the current node [13], as calculated in (3), where 
l represents the queue cache length of the node. 

1 .loadsL
l

= −                                                             (20) 

α andδ represent the relative weights of the change degree of the neighbor nodes and the 
load capacity, respectively, which are both set to 50% in this paper. It can be seen intuitively 
that this function can represent the ability to detect neighbor nodes quickly and smoothly to 
the maximum extent while minimizing the loss of forwarded information. 

Returns are defined by the difference between successive benefit values: 

1 1

1

,      
.

0,     
t t t t

t
t t

U U if U U
R

if U U
ζ
ζ

+ +

+

 − − >=  − <
                                        (21) 

where ζ  represents an adjustable parameter. When the difference between the two benefit 
functions is greater thanζ , that difference is taken as the return function. When the return 
function is positive (negative), it represents a reward (punishment). The value function can be 
defined as follows: 

1
0

( , ) ,

, .

t t t

k
t k t t

k

Q s a G S s A a

         R S s A a

π π

π γ
∞

+ +
=

= =  
 = = = 
 
∑

 ∣

∣




                                        (22) 

where 1

1

T
k t

t k
k t

G Rγ − −

= +
∑ . When the value function is maximized, the required periodic strategy 

for adjusting the broadcast HELLO message, ( | )a sπ , can be obtained: 

* ( , ) max ( , )Q s a Q s aππ
                                                  (23) 

Compared with traditional routing technology, its advantages lie in that it improves the 
ability of nodes to find neighbors and increases the stability of the routing protocol in the face 
of a highly dynamic topological environment; it also reduces the protocol’s overhead under a 
relatively stable topology environment. 
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4.4 Routing protocol implementation 
 

QLGR extends the message format beyond that of the GPSR routing protocol to support 
data transmission and message sharing. There are two main formats of the message packets: 
HELLO and information. The design of the message format is conducive to the acquisition of 
node information and the realization of an optimal path strategy. On this basis, the specific 
process of routing protocol is as follows: 

Initial work: Set up the routing table at the start node and initialize the parameters related to 
setting up the network. 
Route discovery: Each node periodically broadcasts HELLO messages across the network, 
informs the surrounding nodes of its own node status, determines the node link quality and 
load capacity within the single-hop communication range according to the received HELLO 
messages and evaluates the LR of the node quality. Based on these, each node will update its 
Q-table after receiving a HELLO message and monitor the communication requirements in 
the network to prepare for information packet transmission at any time. 

Message receiving: When the current node receives a message sent by a neighbor node, it 
will determine the message type. If it is HELLO, it will perform the routing discovery 
operation and update the corresponding Q-value. If the received message is information, it will 
judge whether the packet has already passed through this node according to the packet’s source 
node and serial number. If so, it executes (15), setting GR GR= − , and updates the Q-table, 
then routes and forwards the packet; if not, it goes directly to the route forwarding step. 
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Route discovery

Send (receive) 
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Neighbor node 
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Y
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N

Reward GR

Y
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Fig. 7. Q-learning-based geographic routing protocol flow chart 

 
Route forwarding: In the current node’s message queue, when an information packet needs 

to be sent, the location of the packet’s first destination node is obtained and combined with the 
Q-value information in the Q-table to calculate the discounted Q-value of each neighbor, and 
the next hop for forwarding is selected according to the softmax strategy. The detailed process 
for this is shown in Fig. 7. 
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5 Simulation Experiment 
In this section, we simulated the protocol on the ns3-gym simulation platform [23]. We 

compared and analyzed several important performance indicators of routing protocols: average 
transmission delay, throughput, packet loss rate and average delay jitter. We then optimized 
the routing algorithm using the protocol in Section4.3, calling the resulting algorithm QLGR-S, 
and compared it with GPSR. 

In the experiment, each node was regarded as an agent, that is, each node was required to 
have corresponding computing power. Also, for convenience, the state of each node was input 
to an agent so as to output different time slot results, so that the agent could obtain more states 
and learn to give better results, as shown in Fig. 8. 

Prototype 
status

Agent
(algorithm)

Node agentInput state

NS3-gym

action

 
Fig. 8. Simulation architecture 

 

Obtain the dataset: QLGR learns in the interaction with the environment, and thus a training 
dataset can be generated by combining the required parameters obtained using the simulation 
environment, NS3-gym. Specifically, the NS3 side provides interface functions pertaining to 
passing status: MyGetObservation(), reward MyGetReward(),end marker MyGetGameOver() 
and receiving action MyExecuteActions(action). Correspondingly, the OpenAI Gym side 
provides the interface functions obs, done, reward=step(action) for receiving status, as well as 
reward, end flag, and passing action information. 

To compare the performance between routing protocols more comprehensively, we refer to 
the experimental approach of the literature [37]. The simulations of the experiments defined 
four scenarios, Grid size = 5km×5km and Number of nodes = 20, Grid size = 3km×3km and 
Number of nodes = 20, Grid size = 5km×5km and Number of nodes = 40, Grid size = 
3km×3km and Number of nodes = 40. To form a usable network topology, considering the 
size of the grid and the node density, we set the maximum communication distance of the 
nodes to 600 m and the movement speed between 100-300 m/s. Other network parameters and 
algorithm training parameters are shown in Table 2. 

 
Table 2. Experimental Parameter Settings 

  GPSR QLGR QLGR-S 

 
 
 
 
 
Environment 
parameters 

Simulation area 5 km × 5 km, 
3 km × 3 km 

5 km × 5 km, 
3 km × 3 km 

5 km × 5 km, 
3 km × 3 km 

Number of nodes 20,40 20,40 20,40 
Mobility model Gauss–Markov 

mobility model 
Gauss–Markov 
mobility model 

Gauss–Markov 
mobility model 

Simulation time 200 s 200 s 200 s 
Node movement speed 100−300 m/s 100−300 m/s 100−300 m/s 
altitude of UAVs 200m 200m 200m 
transmission ranges for UAVs  600m 600m 600m 
HELLO message interval 0.5s 0.5s Adaptive 
Send buffer size 32kB 32kB 32kB 
Receive buffer size 32kB 32kB 32kB 
Data transmission mode CBR CBR CBR 
Packet size 512 bytes 512 bytes 512 bytes 
Data transmission efficiency 1−11 Hz 1−11 Hz 1−11 Hz 
MAC protocol IEEE 802.11b IEEE 802.11b IEEE 802.11b 
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Training 
parameters 

Learning rate tα  - 31 10-×  31 10-×  
Discount factor γ  - 0.9 0.9 

Value weight 1w  of node j - 0.2 0.2 

Value weight 2w  of other node - 0.05 0.05 

Weight neighbor node change degree  α  - - 0.5 

Weight of  network load capacity δ  - - 0.5 

HELLO message adjustment range - 0ms -1000ms, 0ms, 
+1000ms 

 
A model should exhibit good network performance and capture UAV movement accurately. 

The existing mobility models include random, temporally dependent, and spatially dependent 
models with geographical constraints, and hybrids. The Gauss Markov mobility model (GMM) 
considers time correlations when simulating aerodynamic constraints on nodes and, thus, 
models real-world situations effectively[2], as follows: (1) Set the initial speed and direction 
of the node; (2) the node moves for a preset time; (3) node direction and speed are updated 
using (24); and, (4) step (2) is repeated and a cycle develops. 

 

( )
( )

1

2
1

2
1 1

(1 ) 1

(1 ) 1

n n

n

n s x

n n x

s s s

d d d d d

α α α

α α

− −

− −

= + − + −

= + − + −
                                (24) 

where ns  and nd  are the new speed and direction of the mobile node over the time interval 
n , and s and d are constants when n →∞ . The GMM reflects the high-level dynamics of the 
network topology and accommodates UAV flight well under real-world conditions. 

The performance parameters compared in the experiment were defined as follows. 
Throughput: the speed at which nodes actually send data through the network; throughput 

is the average rate at which messages are successfully transmitted through the communication 
channel, calculated as: 

totle .CThoughput
τ

=                                                         (25) 

where totleC represents the total number of data packets successfully transmitted, and τ
represents the time taken to transmit them. 

Routing overhead: the number of messages, other than information packets, in the whole 
network required to maintain routing transmission, 

1
.n

ii
RO C

=
=∑                                                                   (26) 

where iC represents the number of messages in the network other than information packets. 
Average end-to-end delay: the average time taken to transmit messages from the source 

node to the destination node, 

1

1 ( )
N

i
DT DT i

N =

= ×∑                                      (27) 

where N represents the number of transmitted data packets, and ( )DT i represents the 
transmission delay of the ith data packet. 
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Packet loss rate: an important indicator of network quality; the number of packets lost in 

the network during data transmission, typically evaluated as the number of such packets as a 
proportion of the total number sent during a characteristic period,  

NS NRLoss
NS
−

=                                                   (28) 

where NS and NR represent the total number of packets sent and received, respectively, by a 
node. 

Residual energy: To reflect the energy consumption of the routing algorithm, it is necessary 
to statistically analyze the residual energy of the UAV to complete several tasks, and the 
energy consumed by the UAV to transmit data is 

2
0

4
0

elec 

elec 

fs
TX

mp

nE n d d d
E

nE n d d d
ε
ε

 + <=  + ≥
                                           (29) 

Where n is the number of bits, elec E is the energy consumed per bit of data received and 
transmitted, ε is the energy per bit transmitted per unit square meter by the transmitting 
amplifier, if the transmission distance is less than the threshold 0d , the power amplification 
loss is used in the free space model; conversely, the multi-path fading model is used. The 
energy consumed for receiving data is 

( )RX elecE n nE=                                                       (30) 
So the residual energy of the UAV node is 

( )1 100%residual 
TX

AL

R

L

X RE E E
E
+ ×

= − ×                                    (31) 

where R is the number of missions performed by the UAV. 
We performed simulations for four scenarios, and then the results of each performance 

parameter were counted. 
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(c) (d) 
Fig. 9. Relationship between node speed and throughput 

 

  
(a) (b) 

  
(c) (d) 

 
Fig. 10. Relationship between node speed and packet loss rate 
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Fig. 9 reflects the relationship between the speed of the UAV nodes and the network 
throughput in the simulation state. Where the left (a) and (c) are the results for a network area 
size of 5km*5km, represented by solid lines, and the right (b) and (d) are the results for 
3km*3km, represented by dashed lines, with 20 nodes in (a) and (b) and 40 nodes in (c) and 
(d), and are consistent with this below. Fig. 10 reflects the relationship between node speed 
and network packet loss rate. It can be seen from Fig. 9 and Fig. 10 that the throughput of all 
three routing protocols decreases and the packet loss rate increases as the speed of the nodes 
increases. From overall view, the increase in speed causes a significant change in the network 
topology, where links capable of transmission are quickly disconnected and new links suitable 
for transmission are generated in a very short time, too late for the routing protocol to take 
advantage of the link. This leads to an increase in network transmission uncertainty and many 
packets are dropped due to lifecycle arrivals before reaching the destination node, hence the 
network throughput keeps decreasing, and the packet loss rate increases. Concretely, our 
proposed QLGR protocol outperforms the GPSR routing protocol in terms of throughput and 
packet loss rate because QLGR improves the reliability of routing by taking into account the 
link quality and the distance factor from the destination node when routing and forwarding. In 
addition, QLGR-S routing protocol using an optimized link probing algorithm outperforms 
QLGR in terms of throughput because the load and mobility of nodes are taken into account 
when selecting the sending time slot during the route discovery phase. 
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Fig. 11. Relationship between node speed and average end-to-end delay 
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Fig. 11 shows the simulation results of the average end-to-end delay with node movement 
speed for the three routing protocols in the four grids. As a whole, the average end-to-end 
delay of all routing protocols increases with increasing node speed. Because stable link quality 
relies on stable network topology, an increase in node speed leads to a decrease in the number 
of communicable links. Specifically, the average end-to-end delay of our proposed QLGR 
protocol is smaller than that of GPSR protocol because the QLGR series routing takes into 
account the location relationship between the next-hop neighbor node and the destination node 
and reduces the routes into the perimeter forwarding mode using the reward and penalty 
mechanism, which is good at reducing the data transmission delay. So as seen from the curves 
in the figure, although the latency of all three protocols increases with speed, QLGR series 
routing is better than GPSR and QLGR-S routing is, in turn, better than QLGR due to the 
maintenance of Q at the update node indicates that the QLD algorithm is more adaptive. 
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Fig. 12. Relationship between node speed and network overhead 
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Fig. 13. Relationship between network load and network overhead 
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Fig. 14. Relationship between network load and throughput 

 
Fig. 14 shows the network load versus throughput for the three routing protocols in the four 
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(c) (d) 

Fig. 15. Relationship number of tasks performed and residual energy 
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Fig. 16. UAV speed and topology changes on the performance of routing protocols in terms of 

throughput, packet loss and energy consumption 
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routing strategy in accordance with local information; through the definition of global reward, 
all nodes cooperate to complete data transmission. The node value function considers 
information about the link quality, node energy and queue length, reducing the possibility that 
geographic routing is trapped in the hole effect. To reduce the routing overhead of the proposed 
protocol, we have also proposed an optimization method in this paper, which adaptively 
adjusts the cycle for broadcasting the HELLO packets, so that the link quality is maintained 
while the overhead of that maintenance is minimized. Our simulation showed that our new 
protocol improved the performances of all network parameters compared to those of a 
traditional, geographic location-based routing algorithm. Our protocol enhances the 
connectivity of UAV networking, guarantees low overhead and high-throughput 
communication among UAVs, and will aid the further development of UAV technology. 

Our research plan and applications of the proposed method will derive from some limitations 
of the current work. Multi-agent reinforcement learning is not the first time to be used in network 
routing, and many works have made some attempts, but this paper is the first attempt to use multi- 
agent reinforcement learning for optimizing the location-based routing protocol in FANET. With 
the utilization of multi-agent systems in continuous state space and complex scenarios, the 
scalability of algorithms is the latest challenge, and later research can try other algorithms for multi-
intelligent body systems, such as MADDPG (Multi-agent Deep Deterministic Policy Gradient), 
DRQN (Deep recurrent Q- network), etc. 

In terms of the simulation, we have completed the simulation of flight environment based on 
NS3-Gym, but among FANET applications, there are relatively few network simulation tools that 
incorporate reinforcement learning, and it appears to be somewhat difficult to fully and completely 
simulate the flight environment of UAVs and perform network performance statistics. In the 
follow-up work, we will consider proposing more general network settings and providing more 
comprehensive tools to facilitate the development of reinforcement learning in network routing. 

Reinforcement learning has been applied to various routing schemes in distributed wireless 
networks, including wireless LANs, wireless sensor networks, cognitive radio networks, and delay-
tolerant networks, and it has been shown to improve network performance, such as higher 
throughput and lower end-to-end delay. RL enables wireless nodes to observe their local operating 
environment and subsequently learn to make global routing decisions efficiently. It is foreseeable 
that the advantages that RL brings to routing will attract a great deal of research interest shortly. 
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