Acknowledgement
This work was partly supported by an Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00981, Development of Digital Holographic Metrology Technology for Phase Retrieval; 50%) and by an Institute of Civil Military Technology Cooperation grant funded by the Defense Acquisition Program Administration and Ministry of Trade, Industry and Energy of the Korean government (No. 18-CM-DP-24, Development of digital HOE for immersive exhibition applications; 50%).
References
- T.-C. Poon, "canning holography and two-dimensional image processing by acousto-optic two-pupil synthesis," J. Opt. Soc. Am. A 2, 521-527 (1985). https://doi.org/10.1364/josaa.2.000521
- T. C. Poon and A. Korpel, "Optical transfer function of an acousto-optic heterodyning image processor," Opt. Lett 4, 317-319 (1979). https://doi.org/10.1364/OL.4.000317
- T.-C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, "Twin-image elimination experiments for three-dimensional images in optical scanning holography," Opt. Lett 25, 215-217 (2000). https://doi.org/10.1364/OL.25.000215
- G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, "Imaging properties of scanning holographic microscopy," J. Opt. Soc. Am. A 17, 380-390 (2000). https://doi.org/10.1364/josaa.17.000380
- Y. S. Kim, T. Kim, S. S. Woo, H. Kang, T.-C. Poon, and C. Zhou, "Speckle-free digital holographic recording of a diffusely reflecting object," Opt. Express 21, 8183-8189 (2013). https://doi.org/10.1364/OE.21.008183
- M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Process. Mag. 25, 83-91 (2008). https://doi.org/10.1109/MSP.2007.914730
- U. Schnars and W. Juptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994). https://doi.org/10.1364/AO.33.000179
- E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). https://doi.org/10.1364/AO.38.006994
- D. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, "High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms," Appl. Opt. 47, D12-D20 (2008).
- G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, "Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization," Opt. Express 25, 33400-33415 (2017). https://doi.org/10.1364/OE.25.033400
- N. Leal-Leon, M. Medina-Melendrez, J. M. Flores-Moreno, and J. Alvarez Lares, "Object wave field extraction in off-axis holography by clipping its frequency components," Appl. Opt. 59, D43-D53 (2020).
- T.-C. Poon and T. Kim, "Optical image recognition of three-dimensional objects," Appl. Opt. 38, 370-381 (1999). https://doi.org/10.1364/AO.38.000370