DOI QR코드

DOI QR Code

Development of a High-Resolution Near-Surface Air Temperature Downscale Model

고해상도 지상 기온 상세화 모델 개발

  • Lee, Doo-Il (Department of Atmospheric Science, Kongju National University) ;
  • Lee, Sang-Hyun (Department of Atmospheric Science, Kongju National University) ;
  • Jeong, Hyeong-Se (National Institute of Meteorological Sciences) ;
  • Kim, Yeon-Hee (National Institute of Meteorological Sciences)
  • 이두일 (공주대학교 자연과학대학 대기과학과) ;
  • 이상현 (공주대학교 자연과학대학 대기과학과) ;
  • 정형세 (국립기상과학원 미래기반연구부) ;
  • 김연희 (국립기상과학원 미래기반연구부)
  • Received : 2021.07.09
  • Accepted : 2021.09.30
  • Published : 2021.12.31

Abstract

A new physical/statistical diagnostic downscale model has been developed for use to improve near-surface air temperature forecasts. The model includes a series of physical and statistical correction methods that account for un-resolved topographic and land-use effects as well as statistical bias errors in a low-resolution atmospheric model. Operational temperature forecasts of the Local Data Assimilation and Prediction System (LDAPS) were downscaled at 100 m resolution for three months, which were used to validate the model's physical and statistical correction methods and to compare its performance with the forecasts of the Korea Meteorological Administration Post-processing (KMAP) system. The validation results showed positive impacts of the un-resolved topographic and urban effects (topographic height correction, valley cold air pool effect, mountain internal boundary layer formation effect, urban land-use effect) in complex terrain areas. In addition, the statistical bias correction of the LDAPS model were efficient in reducing forecast errors of the near-surface temperatures. The new high-resolution downscale model showed better agreement against Korean 584 meteorological monitoring stations than the KMAP, supporting the importance of the new physical and statistical correction methods. The new physical/statistical diagnostic downscale model can be a useful tool in improving near-surface temperature forecasts and diagnostics over complex terrain areas.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「수요자 맞춤형 기상정보 산출기술 개발연구」(KMA2018-00622)와 2019년 공주대학교 연구년 사업의 지원으로 수행되었습니다.

References

  1. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
  2. Garratt, J. R., 1987: The stably stratified internal boundary layer for steady and diurnally varying offshore flow. Bound.-Lay. Meteorol., 38, 369-394. https://doi.org/10.1007/BF00120853
  3. Garratt, J. R., and B. F. Ryan, 1989: The structure of the stably stratified internal boundary layer in offshore flow over the sea. Bound.-Lay. Meteorol., 47, 17-40. https://doi.org/10.1007/BF00122320
  4. Giannaros, T. M., K. Lagouvardos, V. Kotroni, and A. Matzarakis, 2018: Operational forecasting of humanbiometeorological conditions. Int. J. Biometeorol., 62, 1339-1343, doi:10.1007/s00484-018-1525-3.
  5. Glover, R. W., 1999: Influence of spatial resolution and treatment of orography on GCM estimates of the surface mass balance of the Greenland Ice Sheet. J. Climate, 12, 551-563. https://doi.org/10.1175/1520-0442(1999)012<0551:IOSRAT>2.0.CO;2
  6. Hrisko, J., P. Ramamurthy, Y. Yu, P. Yu, and D. Melecio-Vazques, 2020: Urban air temperature model using GOES-16 LST and a diurnal regressive neural network algorithm. Remote Sens. Environ., 237, 111495, doi:10.1016/j.rse.2019.111495.
  7. Janicke, B., K. R. Kim, and C. Cho, 2020: A simple highresolution heat-stress forecast for Seoul, Korea: coupling climate information with an operational numerical weather prediction model. Int. J. Biometeorol., 64, 1197-1205, doi:10.1007/s00484-020-01893-1.
  8. Jayakumar, A., E. N. Rajagopal, I. A. Boutle, J. P. George, S. Mohandas, S. Webster, and S. Aditi, 2018: An operational fog prediction system for Delhi using the 330 m Unified Model. Atmos. Sci. Lett., 19, e796, doi:10.1002/asl.796.
  9. Keum, W.-H., S.-H. Lee, D.-I. Lee, S.-S. Lee, and Y.-H. Kim, 2021: Evaluation and improvement of the KMAPP surface wind speed prediction over complex terrain areas. Atmosphere, 31, 85-100, doi:10.14191/Atmos.2021.31.1.085 (in Korean with English abstract).
  10. Kim, D.-J., G. Kang, D.-Y. Kim, and J.-J. Kim, 2020: Characteristics of LDAPS-predicted surface wind speed and temperature at automated weather stations with different surrounding land cover and topography in Korea. Atmosphere, 11, 1224, doi:10.3390/atmos11111224.
  11. KMA, 2011: Numerical Data Application Manual. Korea Meteorological Administration, 64 pp (in Korena).
  12. Lalas, D. P., and F. Einaudi, 1974: On the correct use of the wet adiabatic lapse rate in stability criteria of a saturated atmosphere. J. Appl. Meteorol. Clim., 13, 318-324. https://doi.org/10.1175/1520-0450(1974)013<0318:OTCUOT>2.0.CO;2
  13. Liu, D., C. S. B. Grimmond, J. Tan, X. Ao, J. Peng, L. Cui, B. Ma, Y. Hu, and M. Du, 2018: A new model to downscale urban and rural surface and air temperatures evaluated in Shanghai, China. J. Appl. Meteorol. Clim., 57, 2267-2283, doi:10.1175/JAMC-D-17-0255.1.
  14. Lee, S.-H., 2011: Further development of the vegetated urban canopy model including a grass-covered surface parametrization and photosynthesis effects. Bound.- Lay. Meteorol., 140, 315-342, doi:10.1007/s10546-011-9603-7.
  15. Lee, S.-H., S.-W. Kim, W. M. Angevine, L. Bianco, S. A. McKeen, C. J. Senff, M. Trainer, S. C. Tucker, and R. J. Zamora, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 2127-2143, doi:10.5194/acp-11-2127-2011.
  16. Masato, G., A. Bone, A. Charlton-Perez, S. Cavany, R. Neal, R. Dankers, H. Dacre, K. Carmichael, and V. Murray, 2015: Improving the health forecasting alert system for cold weather and heat-waves in England: a proof-of-concept using temperature-mortality relationships. PLoS One, 10, e0137804, doi:10.1371/journal.pone.0137804.
  17. Morakinyo, T. E., C. Ren, Y. Shi, K. K.-L. Lau, H.-W. Tong, C.-W. Choy, and E. Ng, 2019: Estimates of the impact of extreme heat events on cooling energy demand in Hong Kong. Renew. Energ., 142, 73-84, doi:10.1016/j.renene.2019.04.077.
  18. Moseley, S., 2011: From observations to forecasts - Part 12: Getting the most out of model data. Weather, 66, 272-276, doi:10.1002/wea.844.
  19. NIMS, 2017: Korea Meteorological Administration Post Processing (KMAPP) system user manual. National Institute of Meteorological Sciences, 36 pp (in Korean).
  20. Nieuwstadt, F. T. M., and H. Tennekes, 1981: A rate equation for the nocturnal boundary-layer height. J. Atmos. Sci., 38, 1418-1428. https://doi.org/10.1175/1520-0469(1981)038<1418:AREFTN>2.0.CO;2
  21. Oh, J.-S., J.-H. Lee, J.-W. Woo, D.-I. Lee, S.-H. Lee, J. Seo, and N. Moon, 2020: Performance evaluation of the high-resolution WRF meteorological simulation over the Seoul metropolitan area. Atmosphere, 30, 257-276, doi:10.14191/Atmos.2020.30.3.257 (in Korean with English abstract).
  22. Prasanna, V., H. W. Choi, J. Jung, Y. G. Lee, and B. J. Kim, 2018: High-resolution wind simulation over Incheon international airport with the Unified Model's Rose Nesting Suite from KMA operational forecasts. Asia-Pac. J. Atmos. Sci., 54, 187-203, doi:10.1007/s13143-018-0003-5.
  23. Price, J. D., and Coauthors, 2011: COLPEX: field and numerical studies over a region of small hills. Bull. Amer. Meteor. Soc., 92, 1636-1650, doi:10.1175/2011BAMS3032.1.
  24. Rodriguez, E., C. S. Morris, J. E. Belz, E. C. Chapin, J. M. Martin, W. Daffer, and S. Hensley, 2005: An assessment of the SRTM topographic products. Tech. Rep. JPL D-31639, Jet Propulsion Laboratory, 143 pp.
  25. Sheridan, P., S. Smith, A. Brown, and S. Vosper, 2010: A simple height-based correction for temperature downscaling in complex terrain. Meteorol. Appl., 17, 329-339, doi:10.1002/met.177.
  26. Sheridan, P., S. Vosper, and S. Smith, 2018: A physically based algorithm for downscaling temperature in complex terrain. J. Appl. Meteor. Climatol., 57, 1907-1929, doi:10.1175/JAMC-D-17-0140.1.
  27. Seok, J.-H., H.-W. Choi, Y.-H. Kim, and S.-S. Lee, 2020: Diagnosis of low-level aviation turbulence using the Korea Meteorological Administration Post Processing (KMAPP). J. Korean Soc. Aviat. Aeronaut., 28, 1-11, doi:10.12985/ksaa.2020.28.4.001 (in Korean with English abstract).
  28. Yun, J., Y.-H. Kim, and H.-W. Choi, 2021: Analyses of the meteorological characteristics over South Korea for wind power applications using KMAPP. Atmosphere, 31, 1-15, doi:10.14191/Atmos.2021.31.1.001 (in Korean with English abstract).
  29. Verkade, J. S., J. D. Brown, P. Reggiani, and A. H. Weerts, 2013: Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. J. Hydrol., 501, 73-91, doi:10.1016/j.jhydrol.2013.07.039.
  30. Vosper, S. B., and A. R. Brown, 2008: Numerical simulations of sheltering in valleys: The formation of nighttime cold-air pools. Bound.-Lay. Meteorol., 127, 429-448. https://doi.org/10.1007/s10546-008-9272-3
  31. Walland, D. J., and I. Simmonds, 1996: Sub-grid-scale topography and the simulation of Northern Hemisphere snow cover. Int. J. Climatol., 16, 961-982. https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<961::AID-JOC72>3.0.CO;2-R
  32. Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184-194, doi:10.1080/02723646.1981.10642213.