DOI QR코드

DOI QR Code

Fabrication of a Novel Ultra Low Temperature Co-fired Ceramic (ULTCC) Using BaV2O6 and BaWO4

BaV2O6와 BaWO4을 이용한 초저온 동시소성 세라믹 제조

  • Kim, Duwon (Department of Display and Materials Engineering, Soonchunhyang University) ;
  • Lee, Kyoungho (Department of Display and Materials Engineering, Soonchunhyang University)
  • 김두원 (순천향대학교 디스플레이신소재공학과) ;
  • 이경호 (순천향대학교 디스플레이신소재공학과)
  • Received : 2021.11.01
  • Accepted : 2021.11.17
  • Published : 2021.12.30

Abstract

A novel microwave dielectric composite material for ultra-low temperature co-fired ceramics (ULTCC) with (1-x)BaWO4-xBaV2O6 (x=0.54~0.85) composition was prepared by firing a mixture of BaWO4 and BaV2O6. Shrinkage tests showed that the ceramic composite begins to densify at a temperature as low as 550℃ and can be sintered at 650℃ with 98% of relative density under the influence of BaV2O6. X-ray diffraction analysis showed that BaWO4 and BaV2O6 coexisted and no secondary phase was detected in the sintered bodies, implying good chemical compatibility between the two phases. Near-zero temperature coefficients of the resonant frequency (𝛕f) could be achieved by controlling the relative content of the two phases, due to their positive and negative 𝛕f values, respectively. With increasing BaV2O6 (x from 0.53 to 0.85), the 𝛕f value of the composites increased from -7.54 to 14.49 ppm/℃, εr increased from 10.08 to 11.17 and the quality factor (Q×f value) decreased from 47,661 to 37,131 GHz. The best microwave dielectric properties were obtained for x=0.6 samples with εr=10.4, Q×f=44,090 GHz, and 𝛕f=-2.38 ppm/℃. Chemical compatibility experiments showed the developed composites are compatible with aluminum electrode during co-firing process.

(1-x)BaWO4-xBaV2O6(x=0.54~0.85) 조성의 새로운 초저온 동시 소성 세라믹(ULTCC)용 마이크로파 유전체 복합 재료를 BaWO4와 BaV2O6의 혼합물을 소성하여 제조되었다. 수축 시험은 세라믹 복합재가 BaV2O6의 영향으로 500℃의 낮은 온도에서 치밀화가 시작되며, 650℃에서 상대밀도 98%로 소결될 수 있음을 보였다. X-선 회절 분석은 복합체는 BaWO4와 BaV2O6이 공존하고 소결체에서 2차상이 검출되지 않음을 보였다. 이는 두 상이 서로 우수한 화학적 안정성이 있음을 의미하였다. 거의 0에 가까운 공진 주파수 온도계수(𝛕f)는 복합체에 존재하는 두 상의 𝛕f 값이 각각 양(+) 및 음(-)의 값임에 따라 두 상의 상대적 함량을 조절하여 얻을 수 있었다. BaV2O6의 함량이 x=0.53에서 0.85로 증가함에 따라 복합 재료의 𝛕f 값은 7.54에서 14.49 ppm/℃로 증가하였고 εr은 10.08에서 11.17로 증가했으며 Q×f값은 47,661에서 37,131 GHz로 감소하였다. 최고의 마이크로파 유전 특성은 BaV2O6의 함량이 x=0.6 일 때, εr=10.4, Q×f=44,090 GHz 및 𝛕f=-2.38 ppm/℃값을 얻을 수 있었다. 화학적 호환성 실험은 개발된 복합 재료가 동시 소성 과정에서 알루미늄 전극과 반응성이 없음을 보여주었다.

Keywords

Acknowledgement

이 논문은 2020학년도 순천향대학교 교수 연구년제에 의하여 연구하였음.

References

  1. G. N. Howatt, R. G. Breckenridge, and J. M. Brownlow, "Fabrication of Thin Ceramic Sheets for Capacitors", J. Am Ceram. Soc., 30(8), 237 (1947). https://doi.org/10.1111/j.1151-2916.1947.tb18889.x
  2. A. Bailey, W. Foley, M. Hageman, C. Murray, A. Piloto, K. Sparks, and K. Zaki, "Miniature LTCC Filters for Digital Receivers", IEEE MTT-S International Microwave Symposium Digest, 2, 999 (1997).
  3. M. T. Sebastian, and H. Jantunen, "Low Loss Dielectric Materials for LTCC Applications: A Review", Int. Mater. Rev, 53(2), 57 (2008). https://doi.org/10.1179/174328008X277524
  4. A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M.A. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for 5G Mobile and Wireless communications: the Vision of the METIS Project", IEEE Commun. Mag. 52(5), 26 (2014). https://doi.org/10.1109/MCOM.2014.6815890
  5. D. Zhou, H. Wang, L. X. Pang, X. Yao, and X. G. Wu, "Microwave Dielectric Characterization of a Li3NbO4 Ceramic and Its Chemical Compatibility with Silver", J. Am. Ceram. Soc. 91(12), 4115 (2008). https://doi.org/10.1111/j.1551-2916.2008.02764.x
  6. D. Zhou, L. X. Pang, J. Guo, Z. M. Qi, T. Shao, Q. P. Wang, H. D. Xie, X. Yao and C. A. Randall, "Influence of Ce Substitution for Bi in BiVO4 and the Impact on the Phase Evolution and Microwave Dielectric Properties", Inorg. Chem. 53(2), 1048 (2014). https://doi.org/10.1021/ic402525w
  7. J. X. Tong, J. H. Zhou, H. Yang, Q. L. Zhang, W. Huang, and Y. You, "Low Temperature Sintering of Li2(Mg0.3Zn0.7)Ti3O8-0.12TiO2 Microwave Dielectric Ceramics with Controllable Grain Size", J. Mater. Sci., Mater. Electron. 25(3), 1293 (2014).
  8. D. Zhou, D. Guo, W. B. Li, L. X. Pang, X. Yao, D. W. Wang and I. M. Reaney, "Novel Temperature Stable High-εr Microwave Dielectrics in the Bi2O3-TiO2-V2O5 system", J. Mater. Chem. C, 4(23), 5357 (2016). https://doi.org/10.1039/C6TC01431C
  9. M. T. Sebastian, R. Ubic, and H. Jantunen, Microwave Materials and Applications, John Wiley & Sons, New York (2017).
  10. M. T. Sebastian, H. Wang, and H. Jantunen, "Low temperature Co-fired Ceramics with Ultra-low Sintering Temperature: a Review", Curr. Opin. Solid State Mater. Sci., 20(3), 15 (2016).
  11. G. Wang, D. N. Zhang, F. Xu, X. Huang, Y. Yang, G. W. Gan, Y. M. Lai, Y. H. Rao, C. Liu, J. Li, L. C. Jin, and H. W. Zhang, "Correlation Between Crystal Structure and Modified Microwave Dielectric Characteristics of Cu2+ Substituted Li3Mg2NbO6 Ceramics", Ceram. Int. 45(8) 10170, (2019). https://doi.org/10.1016/j.ceramint.2019.02.066
  12. X. Q. Song, K. Du, J. Li, R. Muhammad, W. Z. Lu, X. C. Wang, and W. Lei, "Crystal Structures and Microwave Dielectric Properties of Novel Low-Permittivity Ba1-xSrxZn-Si3O8 ceramics", Mater. Res. Bull. 112, 178 (2019). https://doi.org/10.1016/j.materresbull.2018.12.026
  13. H. Zhuang, Z. Yue, S. Meng, F. Zhao, and L. Li, "Low-Temperature Sintering and Microwave Dielectric Properties of Ba3(VO4)2-BaWO4 Ceramic Composites", J. Am. Ceram. Soc., 91(11), 3738, (2008). https://doi.org/10.1111/j.1551-2916.2008.02672.x
  14. C. Tian, Z. Yue, and Y. Zhou, "Microstructures and Microwave Dielectric Properties of Ba4LiNb3O12-BaWO4 Composite Ceramics", Mat. Sci. Eng. B, 178(2), 178 (2013). https://doi.org/10.1016/j.mseb.2012.10.038
  15. W. Zhen, S. Li, and B. Jianjiang, "Low Temperature Sintering and Microwave Dielectric Properties of Li2TiO3-Li2WO4 Composite Ceramics", Ceram. Int., 39(8), 9767 (2013). https://doi.org/10.1016/j.ceramint.2013.05.029
  16. H. Zhuang, Z. Yue, F. Zhao, and L. Li, "Low-Temperature Sintering and Microwave Dielectric Properties of Ba5Nb4O15-BaWO4 Composite Ceramics for LTCC Applications", J. Am. Ceram. Soc., 91(10), 3275 (2008). https://doi.org/10.1111/j.1551-2916.2008.02670.x
  17. D. W. Kim, K. S. Hong, C. S. Yoon, and C. K. Kim, "Low-Temperature Sintering and Microwave Dielectric Properties of Ba5M4O15-BaNb2O6 Mixtures for LTCC Applications," J. Eur. Ceram. Soc., 23(14), 2597 (2003). https://doi.org/10.1016/S0955-2219(03)00154-7
  18. S. H. Yoon, D. W. Kim, S. Y. Cho, K. S. Hong, "Investigation of the Relations between Structure and Microwave Dielectric Properties of Divalent Metal Tungstate Compounds", J. Eur. Ceram. Soc., 26(10-11), 2051 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.058
  19. K. H. Yoon, D. P. Kim, and E. S. Kim, "Effect of BaWO4 on the Microwave Dielectric Properties of Ba(Mg1/3Ta2/3)O3 Ceramics", J. Am. Ceram. Soc., 77(4), 1062, (2005). https://doi.org/10.1111/j.1151-2916.1994.tb07269.x
  20. J. T. Kloprogge, M. L. Weier, L. V. Duong, and R. L. Frost, "Microwave Assisted Synthesis and Characterization of Divalent Metal Tungstate Nanocrystalline Minerals", Mater. Chem. Phys., 88(2-3), 438 (2004). https://doi.org/10.1016/j.matchemphys.2004.08.013
  21. B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Milimeter Range", IRE Trans. Microwave Theory Tech., MTT-8(4), 402 (1960).
  22. W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators", IEEE Trans. Microwave Theory Tech., MMT-18(8), 476 (1970).
  23. A. J. Bosman, and E. E. Havinga, "Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds", Phys. Rev., 129(4), 1593 (1963). https://doi.org/10.1103/PhysRev.129.1593
  24. C. J. Pei, G. G. Yao, and Z. Y. Ren, "Microwave Dielectric Properties of BaV2O6 Ceramics with Ultra-Low Sintering Temperature", J. Ceram. Process. Res., 17(7), 681 (2016). https://doi.org/10.36410/JCPR.2016.17.7.681
  25. L. L. Y. Chang, M. G. Scroger, and B. Phillips, "Alkaline-Earth Tungstates: Equilibrium and Stability in the M-W-O Systems", J. Am. Ceram. Soc., 49(7), 3850 (1966).
  26. T. Yao, Y. Oka, N. Yamamoto, "Structure Refinement of Barium Metavanadate BaV2O6", Inorg. Chim. Acta, 238(1-2), 165 (1995). https://doi.org/10.1016/0020-1693(95)04654-R
  27. A. N. Unnimaya, E. K. Suresh, and R. Ravendran, "Structure and Microwave Dielectric Properties of Ultralow-Temperature Cofirable BaV2O6 Ceramics", Eur. J. Inorg. Chem., 2015(2), 194 (2015). https://doi.org/10.1002/ejic.201403198
  28. S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, "Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina", J. Am. Ceram. Soc., 80(7), 1885 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03066.x
  29. H. Tamura, "Microwave Loss Quality of (Zr0.8Sn0.2)TiO4", Am. Ceram. Soc. Bull., 73, 92 (1994).
  30. A. E. Paladino, "Temperature-Compensated MgTi2O5-TiO2 Dielectrics", J. Am. Ceram. Soc., 54(3), 168 (1971). https://doi.org/10.1111/j.1151-2916.1971.tb12247.x
  31. M. Takata, and K. Kageyama, "Microwave Characteristics of A(B3+1/2B5+1/2)O3 Ceramics (A = Ba, Ca, Sr; B3+= La, Nd, Sm, Yb; B5+= Nb, Ta)", J. Am. Ceram. Soc., 72(10), 1955 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06006.x