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1 |  INTRODUCTION

Digital low-dropout (D-LDO) regulators are used in por-
table devices, biomedical devices, and internet-of-things 
applications [1‒10] because of their lower supply-voltage, 
small power-transistors, stability, and compatible processes. 
However, D-LDO features a long settling time and a ring-
ing problem while settling the output voltage at large load 
transitions.

Several D-LDOs have been developed to reduce set-
tling time [2‒12] and D-LDOs with proportional-integral 
(PI) control removed the ringing. These devices used a lev-
el-crossing ADC with numerous reference voltages [2] and a 
delay line ADC with an analog voltage-to-current converter 
[3]. In [4], a steady-state load current (SLC) estimator was 
used to reduce ringing but required analog voltage-to-time 

and time-to-digital converters. Moreover, the PI control and 
SLC estimator were complex because they required an addi-
tional mathematical operator. Successive approximation reg-
ister (SAR)-type D-LDO [5] improved the transient response 
with a binary PMOS array and removed ringing by using a 
proportional-derivative (PD) compensator. However, when 
the load current is significantly changed, the PD compensa-
tor increases or decreases the PMOS array current to match 
the load current. Here VOUT reaches a minimum or maxi-
mum voltage, resulting in a long settling time. Coarse-fine 
D-LDOs [6,7] reduced the settling time using a large PMOS 
array and a high clock frequency in a coarse control loop, but 
exhibited large ringing in the transient state. In [6], a coarse-
fine D-LDO reduced the ringing by using a current-mirror 
flash analog-to-digital converter and reference changer, but 
showed a slow transient response. In [7], the coarse-fine 
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D-LDO improved the transient response by using the peak 
detector to trigger coarse mode. The D-LDO turns a large 
PMOS transistor on or off at a fast clock cycle. However, 
this process causes a large ringing, which continuously re-
triggers coarse mode and degrades stability. To prevent the 
large ringing, the coarse-fine D-LDO requires a guard time, 
the maximum possible settling time, to reactivate fine mode 
and stop the coarse mode, thereby increasing the overall time 
needed. In [8], the D-LDO reduces the transient response 
time by using a variable-gain accumulator, but exhibited a 
large undershoot voltage. Herein, a newly proposed coarse-
fine D-LDO removes the ringing and reduces settling time by 
adding an auxiliary power stage. The novel device achieved a 
low output ripple voltage by using a comparator with a com-
plete comparison signal. Section 2 describes the architecture 
of the proposed coarse-fine D-LDO and Section 3 shows the 
measurement results from the fabricated chip with the con-
clusions presented in Section 4.

2 |  ARCHITECTURE

2.1 | Proposed coarse-fine digital low-
dropout regulator

Figure 1 shows a conventional D-LDO consisting of a com-
parator, bidirectional shift-register, and PMOS array. The 
comparator compares the output voltage (VOUT) with the ref-
erence voltage (VREF). The bidirectional shift-register turns 
the PMOS transistor on or off in the PMOS array per clock 
cycle according to the comparator output, resulting in the 
regulation of VOUT to VREF by the D-LDO. When the load 
current (ILOAD) is changed from light to heavy, as shown in 
Figure 1B, a large undershoot voltage is generated and the 
PMOS array output current (IOUT) is increased. When VOUT is 
minimized at time T1, IOUT is equal to ILOAD. However, IOUT 
increases continuously because VOUT remained lower than 
VREF. When VOUT is equal to VREF at time T2, IOUT became 
almost two times that of ILOAD. Therefore, VOUT increases 
continuously and an unwanted large overshoot voltage was 
generated. As a result, unwanted overshoot and undershoot 
voltages were generated until VOUT settled to VREF at time 
T3, generating ringing and increasing the setting time [2‒7].

However, the proposed D-LDO specifies that IOUT is 
nearly equal to ILOAD at time T2 by turning off half of the 
turned-on PMOS transistors, as shown in Figure 1C. This 
process removed the unwanted large overshoot voltage and 
reduced settling time. The proposed D-LDO also adopted the 
coarse-fine PMOS arrays to achieve a fast transient response 
and low quiescent current [6,7].

Figure 2 shows the proposed coarse-fine D-LDO with an 
auxiliary power stage consisting of an auxiliary PMOS array 
and auxiliary shift-register (SR) attached to the conventional 

coarse-fine D-LDO. The proposed D-LDO removed the large 
unwanted undershoot voltage by using the auxiliary power 
stage during undershooting. Moreover, the output ripple volt-
age was reduced and the transient response was enhanced 
by using a comparator with a complete comparison signal 
(DONE) (Figure 2B) operating the SR and Bi-SRs immedi-
ately after the comparison completes.

The D-LDO supplied a maximum output current when 
32 coarse PMOS transistors were turned on. The auxiliary 
PMOS array increased the output current during the un-
dershoot. When the load current was changed from light to 

F I G U R E  1  (A) Schematic and (B) waveforms of the 
conventional D-LDO. (C) Waveforms of the newly proposed D-LDO
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heavy, the output current increased by as much as two large 
PMOS transistors per clock cycle by turning on both the aux-
iliary and coarse PMOS transistors. Therefore, the D-LDO 
requires 32 auxiliary PMOS transistors to cover the maxi-
mum load current changing. The fine PMOS array contain-
ing 32 PMOS transistors was designed to cover two coarse 
PMOS transistors.

In the steady state, the D-LDO finely adjusts the output 
current (IOUT) using the fine power stage and CMP1 with a 
slow clock frequency (CLK_F_CMP = CLK_Slow). When 
the CMP1 compares VOUT and VREF, the fine 32-bit Bi-SR 
changes the fine PMOS array current (IFINE) to the compara-
tor output signal (CMP_F) by the complete comparison sig-
nal (DONE_F).

When the peak detector detects an overshoot or under-
shoot outside of VREF_H and VREF_L, CMP1 is deactivated 
(CLK_F_CMP = 0) and the coarse mode is triggered. Then, 
IFINE becomes halved by the half reset signal (RST_Half). 
IOUT is controlled coarsely using the coarse and auxiliary 
power stages via an asynchronous self-clock signal (CLK_
Self_Fast) with a fast clock frequency to prevent the use of 
a high-frequency clock generator. The coarse PMOS array 
current (ICOARSE) decreased or increased from the coarse 
32-bit Bi-SR according to the increased signal (INC) and 

coarse shift-register clock signal (CLK_Coarse). These two 
signals were changed according to the CMP2 output signals 
(CMP_H and DONE_H) or CMP3 output signals (CMP_L 
and DONE_L), when an overshoot (CMP_H = 1) or under-
shoot (CMP_L = 1) is generated, respectively. Except for 
the undershoot, the auxiliary PMOS array current remains 
at zero (IAUX = 0) because the auxiliary 32-bit SR is set by 
the auxiliary set signal (SET_AUX = 1). When an under-
shoot is generated (CMP_L = 1), IAUX increases from the 
auxiliary 32-bit SR as governed by the auxiliary clock sig-
nal (CLK_AUX) from CMP3 output signals (CMP_L and 
DONE_L).

Figure 3 shows the transient waveforms of the proposed 
D-LDO when undershoots and overshoots are generated. 
The coarse and auxiliary PMOS currents (ICOARSE and IAUX) 
are 16 times greater than the fine PMOS current (IFINE). The 
currents (IFINE, ICOARSE, and IAUX) increased or decreased as 
much as a PMOS transistor per clock cycle from the auxil-
iary and bidirectional shift-registers, as shown in Figure 4. 
Exceptionally, ICOARSE decreased as much as two PMOS tran-
sistors per clock cycle from the coarse bidirectional shift-reg-
ister during the overshoot.

When the load current (ILOAD) is changed from light to 
heavy, D-LDO detects the undershoot and operates under 
the coarse mode with a fast clock frequency. It increases 
both the ICOARSE and IAUX until VOUT reaches VREF_L. When 
VOUT = VREF_L, the output current (IOUT) is nearly two times 
that of ILOAD. Then, IOUT becomes almost equal to ILOAD by 
setting IAUX to 0. Therefore, VOUT can be settled within the 

F I G U R E  2  (A) Proposed coarse-fine D-LDO and (B) 
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F I G U R E  3  Transient waveforms of the proposed D-LDO when 
an undershoot and overshoot are generated
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boundary voltages of VREF_L and VREF_H. In addition, fine 
mode is retriggered and VOUT is finely regulated to VREF.

When ILOAD is changed from heavy to light, overshoot is 
detected and coarse mode is triggered. However, the aux-
iliary power stage is not operative, because IAUX was set 
to 0. To improve the transient response, D-LDO decreases 
ICOARSE as much as two PMOS transistors per clock cycle. 
After VOUT reaches the value of VREF_H, VOUT continu-
ally decreases, because IOUT is smaller than that of ILOAD, 
causing an undershoot. If the undershoot retriggers coarse 
mode, D-LDO operates in the same manner as the light-
to-heavy load changing. If not, the D-LDO operates under 
fine mode. As a result, the D-LDO removes ringing, which 
improves the transient response for both the overshoot and 
undershoot.

When the coarse-fine D-LDO supplies the maximum or 
minimum IFINE in fine mode, VOUT is not regulated at VREF 
because IFINE does not show any further increases or de-
creases. The D-LDO requires regulation compensation to 
generate the large glitch voltage [7]. If IFINE is fixed to the 
maximum or minimum before operating in coarse mode, 
regulation compensation occurs in the transient state. This 
generates a large glitch and may retrigger initiation of 
coarse mode. However, after the newly proposed D-LDO 
settles VOUT within the boundary voltages of VREF_H and 
VREF_L during coarse tuning time (∆T1), the difference 
between IOUT and ILOAD falls between –∆ICOARSE and 

∆ICOARSE. The fine PMOS array can supply a current of 
0-2 ∆ICOARSE and initially set to ∆ICOARSE by the half reset 
signal (RST_Half). Therefore, the novel D-LDO can regu-
late VOUT to VREF using the fine PMOS array in fine mode. 
This can remove the large glitch voltage of the regulation 
compensation in the transient state.

Figure 5 shows the digital controller where, in steady 
state, the fine enable signal (Fine_EN) was high because 
CMP_H = 0 and CMP_L = 0. CMP1 in Figure 2A operates 
by the fine comparator clock signal (CLK_F_CMP) with a 
slow clock frequency (CLK_Slow). The peak detector op-
erates via asynchronous self-clock signal (CLK_Self_Fast) 
with a fast clock frequency, as shown in Figure 6. When 
the CLK_Self_Fast changes from low to high, CMP2 and 
CMP3 compare VOUT with VREF_H and VREF_L, respectively. 
After both comparisons are performed, the complete com-
parison signals (DONE_H and DONE_L) become high 
and CLK_Self_Fast becomes low. This resets CMP2 and 
CMP3 so DONE_H and DONE_L become low again and 
CLK_Self_fast becomes high. In this manner, a fast-asyn-
chronous self-clock signal is generated. Therefore, D-LDO 
can operate the peak detector by the fast-asynchronous 
self-clock signal without the need for a high-frequency 
clock generator.

When overshoot or undershoot is generated, as shown 
in Figure 7, the comparator output signal, CMP_H or 
CMP_L, respectively increases. Then, Fine_EN becomes 
lower and the fine PMOS array current (IFINE; described 

F I G U R E  4  (A) Auxiliary shift-register, (B) coarse bidirectional 
shift-register, and (C) fine bidirectional shift-register
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F I G U R E  5  Schematics of the digital controller
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in Figure 2A) becomes halved due to the half reset sig-
nal (RST_Half). The coarse PMOS array current (ICOARSE) 
decreases or increases according to the increase signal 
(INC) via the coarse bidirectional shift-register clock 

signal (CLK_Coarse). The auxiliary PMOS array current 
(IAUX) increased during the undershoot due to the auxiliary 
shift-register clock signal (CLK_AUX).

Figure 8 shows the transient waveforms of the newly pro-
posed D-LDO in the start-up state. Initially, the novel D-LDO 
operates in coarse mode the same manner that caused the un-
dershoot. When VOUT is settled within the VREF_H and VREF_L 
boundary voltages, the D-LDO operates in fine mode and 
finely regulates VOUT to VREF.

Figures 9 and 10 show the ripple voltages (Vripple) of the 
conventional and novel D-LDOs, respectively. The conven-
tional D-LDO operates both the comparator and bidirec-
tional shift-registers (Bi-SR) using the same clock (CLK). 
Bi-SR changes the output current (IOUT) according to the 
comparator output signal CMP_OUT generated at the pre-
vious rising edge of CLK. This increases the ripple volt-
age caused by a single clock delay. However, the proposed 
D-LDO operates the Bi-SR with a complete comparison 
signal (DONE), as shown in Figure 10 [10]. Therefore, IOUT 
changes as soon as the comparison is completed, reduc-
ing the ripple voltage. Table 1 shows a comparison of the 
ripple voltages of the two devices. The proposed D-LDO 
reduces the ripple voltage from 50.5  mV to 11.4  mV at 
CLK = 50 MHz.

F I G U R E  7  Timing diagram of coarse mode
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3 |  EXPERIMENTAL RESULTS

The proposed D-LDO was fabricated using a 65-nm CMOS 
process with VDD = 1.2 V. Figure 11 shows the chip micro-
photograph of the prepared D-LDO with an area of 0.0056 
mm2. The 1 nF output capacitor was incorporated on-chip, 
occupying 0.59  mm2. The test bench was implemented on-
chip to measure the output voltage during the load current 
changes. Figure 12 shows the measurement setup of the 
D-LDO at VDD = 1.2 V and CLK_Slow = 50 MHz. VREF_H, 
and VREF_L are 15 mV above and below the VREF of 1 V. The 
off-chip  resistor, R1, initially drives the light load current in 
the D-LDO. The on-chip resistor, R2, and switch, S1, in the 

test bench change the load current from light to heavy. An 
auxiliary enabled signal (AUX_EN) was then used to activate 
the auxiliary power stage.

Figure 13 shows the measurement of transient re-
sponses with and without the auxiliary power stage when 
the load current changed from 10  mA to 100  mA with 
rising and falling edge times of 20 ns at VIN = 1.2 V and 
VOUT  =  1  V. In steady state, the D-LDO regulates VOUT 
to 1  V from an input voltage of 1.2  V. When the load 
current was changed from 10 mA to 100 mA, the under-
shoot and overshoot of the proposed D-LDO decreased 
from 139  mV to 47  mV and 30  mV to 23  mV, respec-
tively. In addition, the settling time decreased from 2.1 μs 
to 130 ns. The ripple voltage (Vripple) was 4 mV only when 
using the proposed comparator.

Figure 14 shows the measurement the transient re-
sponses of the newly proposed D-LDO, when the load cur-
rent changes from 10 mA to 100 mA with rising and falling 
edge times of 20 ns at VIN = 1.2 V and VOUT = 0.5 V. When 
the load current was changed from 10 mA to 100 mA, the 
undershoot and overshoot of the proposed D-LDO were 
38  mV and 30  mV, respectively, with a settling time of 
130 ns. The measured ripple voltage was 4 mV at the steady 
state at VOUT  =  1  V, VIN  =  1.2  V, and IOUT  =  10  mA, as 
shown in Figure 15. Table 2 shows the performance com-
parisons of various D-LDOs. The maximum output current 
was 100 mA, quiescent current was 75 μA, and peak current 

F I G U R E  1 0  (A) Schematic and (B) transient waveforms of the 
proposed D-LDO using the comparator with a complete comparison 
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efficiency was 99.93% with a power supply rejection ratio 
(PSRR) of 53.9 dB at DC.

The widely used figure-of-merit (FoM) for D-LDOs 
[3,5‒7] can be described as follows:

where COUT is the output capacitance, ∆VOUT is the maximum 
undershoot voltage, IQ is the quiescent current, and ∆ILOAD is 
the load current change range. Coarse-fine D-LDOs exhibit 
smaller FoMs than other control-type D-LDOs. The newly 
proposed D-LDO exhibited the smallest settling time among 
coarse-fine D-LDOs by removing ringing in the transient 
state.

FoM=
COUT ⋅ΔVOUT

ΔILOAD

IQ

ΔILOAD

,

F I G U R E  1 3  Measured transient response (A) without and (B) with the auxiliary power stage when the load current is changed from 10 mA 
to 100 mA with edge times of 20 ns at VIN = 1.2 V and VOUT = 1 V
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4 |  CONCLUSIONS

A low-ripple coarse-fine D-LDO without ringing in the 
transient state was proposed herein. It removes the ring-
ing and improves the transient response using an auxiliary 
power stage, which reduces the output ripple voltage by 
using a comparator with a complete comparison signal. 
The undershoot and overshoot decreased from 139 mV to 
47  mV and 30  mV to 23  mV, respectively. The settling 
time decreased from 2.1 μs to 130 ns and the ripple voltage 
was 4 mV.
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