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1  |   INTRODUCTION

As the amount of mobile traffic continuously increases, 
new expectations on 6G mobile network service types and 
performance bounds are being proposed. Among several 
candidate architectures of 6G mobile networks, the solution 
model using unmanned aerial vehicle (UAV)-based aerial 
platforms (APs) supporting multi-hop free space optical 
(FSO) broadband links [1] is a strong candidate. As a re-
sult, much research on AP-based FSO networking has been 
conducted. The AP network can provide an intermediate 
linkage between the base stations (BSs) to the core network 

or the edge of the network. For wide outdoor service areas, 
it could be more cost-efficient to add on a UAV-based AP 
network than to build an additional wired overlaying the 
6G mobile network. AP networks are also flexible in terms 
of the expansion and reduction of its scale so that it is pos-
sible to control the scalability according to mobile traffic 
demands. For this reason, 6G wireless networks based on 
multiple altitude APs formed by UAV groups have been 
considered in recent papers [2]. Unlike ground-based com-
munication systems, APs require three-dimensional (3D) 
coordinates, which include global positioning system-based 
two-dimensional longitude and latitude information as well 
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as altitude information to express the position of the UAVs 
and their aerial motion vectors.

To satisfy the bandwidth requirements of a 6G wireless 
network [3], several studies have been conducted on multi-
ple wireless signals. Considering the heavy future demands 
on 6G mobile network services, potential candidates that 
satisfy such signal conditions are FSO, radio frequency, 
mmWaves, lasers, and microwaves. Among these signals, 
FSO-based wireless communication has received much at-
tention [4] because using FSO signals within infrared wave-
length ranges enable high-quality point-to-point links from 
the ground to the UAV, and provides ultra-long connectiv-
ity between UAVs within the AP, especially for high-al-
titude platform (HAP)-based UAVs in the 17 km–22  km 
altitude range [2,5–7].

In particular, in APs, the channel environment contin-
uously changes. Hence, in order for the UAVs to maintain 
reliable networking performance, it is crucial to analyze 
such variables in real-time and position the UAVs at the re-
quired locations in each AP, respective to the other UAVs and 
ground control/communication systems (GCSs) [8].

During communication in the AP network, either among 
UAVs or between a UAV and a BS, there are several fac-
tors that can degrade the system performance [9]. The main 
causes of system failure include misalignment, interference 
between the signal transmitter and receiver, atmospheric tur-
bulence [10], reliability issues of the UAVs, and signal scat-
tering at the stratospheric level.

In addition to UAV control and communication, data 
processing time is also important in the 6G UAV network. 
Because the UAV network will also have to support com-
puting processes for real-time UAV control and network 
service support (including edge computing), real-time 
streaming-based big data technologies [11] such as Spark 
Streaming using mini-batches in the range of 0.5 s–3 s are 
needed. For this reason, spark streaming-based processing is 
applied as the real-time data processing scheme in this study. 
UAV control data as well as network service data are con-
sistently transferred and processed through the UAV-based 
APs to maintain extension to the mobile radio access net-
work, where predetermined time bounds have to be satisfied 
for real-time data [12].

The most significant challenge in this scheme is overcom-
ing the erroneous events in real-time data processing that sup-
ports the UAV control and data services that have strict delay 
bounds. Because most big data platforms distribute tasks and 
decide the time bounds without considering the error rate, 
any error event in a single worker node might affect the entire 
communication system [13,14].

To overcome such problems, in this paper, a combined 
time bound optimization scheme is proposed that satisfies 
both control and communication time as well as the data pro-
cessing time in FSO-based 6G UAV aerial networks.

The remainder of this paper is organized as follows. 
Section 2 briefly reviews studies related to UAV network 
optimization and Apache Spark Streaming. Section 3 pro-
poses the system model used in this study. Section 4 intro-
duces the proposed UAV network control system (NCS) and 
Spark Real-time Streaming Adaptive Failure-compensation 
(SRSAF) scheme used for combined time optimization. 
Section 5 explains the process of optimization using a flow-
chart that performs the SRSAF combined time optimization 
process. Section 6 provides a performance analysis of the 
proposed SRSAF optimization process, and the paper is con-
cluded in Section 7.

2  |   BACKGROUND AND RELATED 
WORK

2.1  |  UAV network optimization

As interest in UAV networks has increased, many papers de-
scribing techniques to support UAV networks have emerged. 
Most studies assume that the UAV plays the role of an inter-
mediate node that connects the user equipment (UE) to the 
BS. To ensure that the UAVs perform their required func-
tions smoothly, several studies have attempted to increase 
the stability of the network in terms of energy consumption, 
packet delay, and queuing [15–21].

Zhang and others [15] analyzed the response delay that 
occurs when a packet is transmitted in a two-layer UAV net-
work by dividing it into two parts: communication and com-
putation (queuing). The proposed two-layer UAV network 
consists of Bottom-UAVs, which serve as nodes, and Top-
UAVs, which manage the Bottom-UAVs and communicate 
with the control center. In addition, based on the analyzed 
delay model, an algorithm was proposed to optimize the 
packet delay generated by each UAV.

Asheralieva and others [16] proposed an algorithm that 
optimizes the queuing delay of the BS that processes content 
requests in cloud-based content delivery networks (CDNs). 
CDNs include a device-to-device link and a UAV-based BS. 
The proposed algorithm aims to minimize the content trans-
fer cost and delay.

Li and others [17] proposed an algorithm to minimize the 
packet delay that occurs when performing multi-hop commu-
nication to a macro-cell BS in a multi-layer UAV network. 
The proposed algorithm analyzes the altitude and queuing 
model considering the coverage of the UAV in charge of each 
layer. In addition, an optimization algorithm was proposed to 
minimize the network packet delay.

Wei and others [18] proposed a three decision-making 
algorithm to optimize the energy consumption and delay 
of each task in a cloud-to-thing continuum, where UAVs 
are used as fog nodes. Based on the task and dataset size of 
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the mobile device, the UAV finds a suitable spot and then 
performs communication by calculating the processing fre-
quency and transmission power with a minimized energy 
consumption and delay.

Zhang and others [19] presented a theory for minimizing 
the average energy consumption of smart mobile devices and 
UAVs in UAV-assisted mobile edge computing systems that 
handle stochastic computation tasks. In [9], an algorithm that 
analyzes the amount of computation offloading, resource 
allocation, and flying trajectory scheduling of the UAV and 
performs joint optimization was proposed.

Koushik and others [20] proposed a channel model based 
on the individual error rate of the physical layer, data layer, 
and routing layer in a manned-and-unmanned network, where 
UAVs are used as relay nodes. In addition, a multi-hop queu-
ing model with M/G/1 preemptive repeat priority (MHQ-
PRP) was proposed, which is a queuing model suitable for 
UAV swarm networks. The paper also proposed a positioning 
algorithm to find the location of a UAV suitable for commu-
nication by using the channel data and queuing model based 
on deep Q-learning.

Zhang and others [21] proposed a scheme that can classify 
and process packets into respective networks considering the 
priority, delay, and resource allocation of packets received by 
a UAV supporting multiple radio access networks.

2.2  |  Apache Spark Streaming

In this study, Spark Streaming is applied to support the comput-
ing processes for real-time UAV control and network services, 
which include edge computing. Spark Streaming was selected 
because it is one of the most popular real-time processing plat-
forms in the Apache big data series. This is because of its accu-
racy and reliability, where a mini-batch size of 0.5 s–3 s is most 
suitable for UAV and AP control. The main differences between 
Spark and Spark Streaming are the input processing methods 
used in big data engines. Like its name, Spark Streaming re-
ceives input in the form of a stream and divides the stream 
into small batches (that is, mini-batches) based on time units. 
In Spark Streaming, a series of uniform-sized mini-batches is 
called a discretized stream (DStream). Input DStreams are pro-
cessed in Spark Streaming just like Spark processes batches, but 
the batch sizes are much smaller in Spark Streaming, and the 
execution time of one batch processing is also much smaller.

Figure  1 shows the Apache Spark Streaming system. 
When the input data arrive at the receiver, data are distrib-
uted and replicated for two reasons. The distribution of data 
will enable parallel processing, which is faster, and in case of 
an error, recovery of the resilient distributed datasets (RDDs) 
will be more effective and robust [22,23].

When the computation of the current batch is unrelated 
to the previous batches, the process is called a stateless 

transformation. On the other hand, when the previous batches 
are necessary for the computation of the current batches, the 
process is called a stateful transformation, where additional 
techniques are applied in the Spark Streaming process. The 
most widely used techniques are window-based operations, 
and a key transformation is updateStateByKey(). Such trans-
formations gather several batches into one unit, window the 
composition of the group, and process the windowed range 
of the DStream in the Spark Streaming engine. The window 
slides down the DStream, and the data are sequentially pro-
cessed continuously.

The Spark Streaming system uses RDDs for fault toler-
ance, but differentiates itself from Spark by using checkpoint-
ing for better recovery of stragglers. All RDDs are stored in 
memory, and the system additionally replicates some of the 
RDDs periodically in its external storage (eg, saving every 
10th RDD or every 10 s in Hadoop distributed file system, 
when the input batch size is 1 s). Therefore, when the com-
putation of a certain partition takes an exceptionally long 
time, it will recall the data from the external storage and 
recompute in parallel on a different worker node. However, 
in order to achieve a performance suitable for real-time pro-
cessing of the UAV-based APs applied in this study, it is 
important to set an adequate period for checkpointing. When 
checkpointing occurs in small time intervals, it will degrade 
the performance because it will allocate too much time to 
saving the RDDs externally. On the other hand, when check-
pointing is conducted at longer periods, the system may not 
be able to recover from faults and stragglers in real-time. 
Therefore, a checkpointing period must be set to satisfy the 
real-time requirements of UAV control and data processing 
in the APs.

3  |   SYSTEM MODEL

The structure of a network formed using hierarchical UAVs 
uses the UAVs in the HAP as the mobile network’s back-
haul backbone, as shown in Figure  2. UAVs in the HAP 
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are located at an altitude of about 17 km–22  km [5] and 
communicate with the UAV control center, general static 
cloud, and the UAVs in the low altitude platform (LAP). 
The UAVs in the HAP operate as an access network and 
deliver the data to the general static cloud, which is con-
nected to the corresponding HAP. In addition, UAVs in the 
HAP receive control signals from the UAV control center 
and adjust their positions as well as the positions of the 
UAVs in the LAP.

UAVs in the LAP perform the role of the BS, providing 
direct wireless access to the UEs. Most UAVs in the LAP 
range are within an altitude of 0.1 km–20 km [5], but a more 
common range of a UAV in the LAP serving as a BS would 
be within the altitude range of 0.1 km–5 km, which is consid-
ered in this study as well. UAVs in the LAP handle the pro-
cess of data generated from the UE. In addition, UAVs send 
data and tasks collected from the UE to the general static 
cloud through the HAP for processing.

In order to provide seamless networking connections to 
all UEs, the UAV control center consistently adjusts the po-
sitions of the UAVs. The UAV control center communicates 
with the HAP UAVs and the LAP UAVs to coordinate the 

signaling and data flows and maintain optimal positioning of 
the UAVs.

It is impractical to handle an unlimited number of data-
flows owing to the performance or power issues of the UAVs. 
Therefore, it is essential to control the input data rate of each 
UE in order to process all the given dataflows. Therefore, 
in order to maintain the HAP and LAP-based network, it is 
crucial to know the maximum number of dataflows and input 
data rate that can be sustained based on the communication 
and the DStream processing error rates while satisfying a 
designated time delay bound for real-time control and data 
services, which is the objective of this study.

Figure 3 shows the communication process in the HAP 
and LAP. Figure 3A shows the communication links connect-
ing the UEs within a service radius supported by UAVs in 
the same LAP. In this case, the information communicated 
among the UEs only needs the support of the LAP using a 
few UAV hops.

If the communication distance far exceeds the service ra-
dius of one LAP, the HAP participates in the communication, 
as shown in Figure 3B. Because HAPs can enable communi-
cation over a longer distance than a LAP, the HAP serves the 

F I G U R E  2   Hierarchical UAV network system model
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role of receiving packets from the LAP and transmitting them 
to another LAP close to the destination UE.

When a LAP UAV close to the destination UE cannot 
communicate due to clouds or terrain blockage, the LAP will 
attempt to communicate by searching for an alternative UAV 
route, as shown in Figure  3C. In this case, the LAP UAV 
communicating with the destination UE will avoid the obsta-
cle and take on the role of a BS for the UE. If communication 
with the UE is impossible with the current arrangement of 
UAVs in the LAP, then the control center will relocate the 
UAVs in the LAP to establish communication with the UE.

4  |   COMBINED TIME BOUND 
OPTIMIZATION OF UAV CONTROL, 
COMMUNICATION, AND DATA 
PROCESSING

Two aspects of time are need to be considered in the pro-
posed system model. One is the time it takes for the control 
center to adjust the UAV (Tcc). The other is the time (TDP) it 
takes for the general static cloud to receive and process the 
data. To optimize Tcc, the UAV NCS [24] needs the UAVs 
to apply the computed modifications in order to maintain the 
quality of the network performance. To optimize TDP, modi-
fications were applied to the Apache Spark Streaming pro-
cess to satisfy the real-time delay bounds even when errors 
occur in the communication and data computing process. The 
SRSAF scheme proposed in this paper is different from the 
OptEx [25] and Spark adaptive failure-compensation (SAF) 
[26] schemes because of how it was designed to cope with er-
rors in the communication and data computing process while 
satisfying the real-time delay bounds that support control of 
the UAVs in the HAP and LAP as well as the network data 
services.

4.1  |  UAV NCS

The UAV NCS [24] mainly analyzes the performance of the 
UAV system based on the cloud environment that processes the 
DStream. In this scheme, the UAV NCS [24] was modified and 
used according to the UAV control part of the proposed system 
model. The UAV NCS needs to manage the UAV control center 
to adjust the positions of the UAVs and respond to the UAV 
requests within a predetermined time of Tcc. To ensure this, the 
UAV NCS must be assigned a suitable value of N1 or λ for a 
given system environment. The parameters used in the proposed 
control scheme are listed in Table 1, where F(τ) is computed 
based on (1)–(4), which is explained as follows.

Equation (1) calculates the ratio of successful transmissions 
based on the time-varying position of the UAVs and the reception 
power of the signals. The ratio is determined by several variables, 

including the service radius, transmission power, receiver sensi-
tivity, and velocity of the UAVs, and is based on the equation.

where (x,y) represents the channel fading distribution variables 
of a LAP UAV, v is the speed of a LAP UAV, R is the service ra-
dius of the LAP, r is the distance between the UAV in the LAP 
and the UE with which it is communicating, GT is the transmis-
sion power, and GR=

(
0.3ht∕4�rf

)2
GT is the receive power.

A set of auxiliary variables is needed in the computation 
of F(τ), which can be computed using the probability of suc-
cessful transmission from (1), number of UAVs, packet ar-
rival rate, and service rate. The definitions of the auxiliary 
variables are provided below.

where N1 is the number of dataflows, which represent the 
number of links simultaneously connected within the LAP.

Using the auxiliary variables from (2) and [27], F(τ) can 
be computed from (4), which uses (3).

(1)

Ps(v, R) =Pr[GR≥𝛽]

= �(
0.3ht

4𝜋rf

)2

GT≥𝛽
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1

R
f (h) dh dr
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0.3

)2
𝛽

GT
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1

2𝜋R
e
−

x2+y2

2 dx dy dr,

(2)
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�4 =�p−N1�,
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fn(t) =

n∑
i= 1

�
ki

i
e−t� i

ki∑
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(−1)ki−j
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×
∑
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�
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,

(4)F(TCC)=Pr[T≤TCC]=

TCC

�
0

[�f6(t)+ (1−�)f5(t)] dt.
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In (3), n is used to denote the index number of the auxil-
iary variables, which has a range of 1 < n < 6, and ki denotes 
the number of components based on the same parameter βi.

4.2  |  SRSAF

The method of how the proposed SRSAF scheme computes 
TDP is described in this section. Time TDP is the time required 
to process the data received through the UAV network. 
SRSAF was designed by extending the OptEx model [25] 
and SAF model [26] by making modifications to estimate 
the performance of Spark Streaming supported by the HAP 
and LAP. The proposed SRSAF scheme focuses on optimal 
resource allocations to satisfy real-time constraints, even 
when errors occur in the communication and DStream pro-
cesses. Therefore, extensions to the variable sharing phase 
and the computation phase of the OptEx model [25] and SAF 
model [26] were applied. The parameters used in the SRSAF 
scheme are presented in Table 2.

Estimation of the time to process a batch file in SRSAF 
is as follows.

In (5), Tadd refers to the additional time needed due to an 
error that may occur during the job execution, and Tadd con-
sists of two parts, as shown below:

where Pecommn
Tcommn represents the extra time due to an error 

that might occur during the communication process. In this case, 
only Tcommn is added because the batch file should be retrans-
mitted from the receiver. The term Peexec

(Tevs
+Tecommn

+Teexec
) 

represents the time added due to an error that occurred during 
execution. A worker node that has an error during execution 
goes into a process to recover from the error. At this time, the 
batch file assigned to the failed node cannot be processed. 
Therefore, the driver distributes the batch file to other worker 
nodes for processing. In this process, the DStream variable shar-
ing and communication phase tasks are performed once more. 
Based on the OptEx model [25] and (6), TDP is expressed as.

where A=�commnTbaseline
commn

, B = Ma, and C=�vsT
baseline
vs

, where 
θcommn and θvs are scaling factors that have values between 0 
and 1. Tbaseline

commn
 and Tbaseline

vs
 are the average times taken to per-

form the process (commn, vs) in the big data system. Assuming 
that n is sufficiently large, TDP can be transformed into.

(5)TDP = Tvs+Tcomp+Tadd
=Tvs+Tcommn+Texec+Tadd.

(6)Tadd =Pecommn
Tcommn+Peexec

(
Tevs

+Tecommn
+Teexec

)
,

(7)

TDP =niC+
As

n
+

iB

n
+Pecommn

As

n

+Peexec

{
(n−1)iC+

A
s

n

n−1
+

i
B

n

n−1

}

=niC+
As

n
+

iB

n

+Pecommn

As

n
+Peexec

{
(n−1)iC+

As

n(n−1)
+

iB

n(n−1)

}
,

T A B L E  2   Parameters for SRSAF

Variables Expressions

TDP Estimation time of the data processing phase

Tvs Variable sharing time

Tcomp Computation time

Tcommn Communication time

Texec Execution time

Tadd Time added because of an error

P
e

commn

Error rate in the communication phase

P
e

exec

Error rate in the execution phase

T
e

vs

Variable sharing time in the error recovery phase

T
e

commn

Communication time in the error recovery phase

T
e

exec

Execution time in the error recovery phase

Ma Processing time of a batch file

s Input data size

i Number of iterations

n Number of worker nodes

θ Scaling factor for the baseline time

T A B L E  1   Parameters for the UAV NCS

Variables Expressions

F(τ) Probability that the response time of the whole 
system is smaller than one control period

βi Auxiliary variables of F(τ), i = 1, …, 6
R Service radius of the LAP
β Receiving sensitivity
GT Transmitting power
v Speed of the LAP
h Channel fading coefficient
r Distance between a UE and the LAP
f Frequency of the signal
TCC Interval of a one-time control period of the UAV
N1 Number of dataflows controlled by each LAP
λ Average packet arrival rate
μg Bandwidth of the LAP's output
μe Service rate of the entering server
μp Service rate of the processing server
μo Service rate of the output server
μd Service rate of the database server
δ Access probability of the database server
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where �= iC(1+Peexec
), �= iB+As

(
1+Pecommn

)
, and 

� =Peexec
(As+ iB).

The number of worker nodes (n) required to satisfy 
the  given time-out Tobject can be obtained through (9) and 
(10).

For variable n, the roots that satisfy (10) are obtained as 
(11)–(13).

In (11)–(13), Δ=−2T3
object

+9��Tobject+27�2�. Because 
n is the number of worker nodes, the smallest n becomes the 
optimal number of worker nodes (N2) to be applied.

In (14), ⌈x⌉ represents the least integer greater than or 
equal to x.

5  |   CONTROL FLOWCHART FOR 
UAV AERIAL NETWORK

Within a given time period, the number of dataflows (N1) that 
one UAV can handle or the number of optimal worker nodes 
(N2) necessary to deal with the aggregated input data rate (λ) can 
be calculated based on the control process presented in Figure 4. 
Among the inputs in Figure 4, ρ is the guaranteed minimum rate 
of F(τ), which indicates the ratio of packets that are successfully 
processed within a time period (τ) during the communications 
between the UAVs. The performance bound for F(τ) can be de-
fined based on p, which is a user-specified value according to 
the required quality of service (QoS) of the network.

The control center and HAP manage the QoS of the network 
by calculating changes and updating F(τ), whenever a change 
in the network environment occurs using the scheme presented 
in Section 4. The control center and HAP are involved from the 
start of the control system to the part that derives the optimal N1 
or λ. The relevant part is as follows. When the system starts, it 
initializes counter (xN, xλ) first. The counter adjusts the λ and N1 
values so that they do not exceeding a certain range when they 
do not match the set range. Afterward, if there is a change in the 
network environment, the input data values are updated. The 
user can select one control parameter from among λ and N1, and 
the control system computes and specifies the selected control 
parameters that satisfy p ≤ F(τ) based on (1)–(4).

Parameters ψN and ψλ, which are values between 0 and 1, 
respectively, represent the ratio of how much N1 and λ are to be 
reduced when the control parameter value that satisfies p ≤ F(τ) 
cannot be found. When a proper λ value cannot be found in the 
calculation process, the value of N1 is reduced by (1 − ψN). Then, 
the value of λ that satisfies p ≤ F(τ) is calculated again. When an 
appropriate N1 value is not found in the calculation process, the 
value of λ is reduced by (1 − ψλ). Then, the value of N1 that satis-
fies p ≤ F(τ) is calculated again. If the control parameter values 
that satisfy the requirements cannot be found even after this pro-
cess, it is repeated again, where (xN, xλ) is used as a counter value 
to keep track of the number of times this process is repeated.

When the values of ψN and ψλ are larger, the control pa-
rameter that satisfies the specified probability can be found 
more quickly. However, if ψN and ψλ are too large, opposing 
problems will occur. For example, if N1 is reduced by a large 
margin, the LAP may need to deploy more UAVs than nec-
essary, and reducing λ too much will result in a significant 
reduction in the transmission rate; thus, parameter control 
needs to be carefully conducted.

After calculating the optimal N1 or λ, the control cen-
ter and HAP apply the results to the LAP, where N1 adjusts 
the dataflow managed by adding or reducing the number of 
UAVs in the LAP. In addition, λ changes the value set in the 
currently deployed UAVs of the LAP to adjust the network 
speed within the service range managed by the LAP.
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Changes in N1 and λ made through the above process re-
sult in changes that need to be made in N2, which is adapted 
to ensure that the Spark DStream process can be completed 
in real time.

When N1 or λ, based on (1)–(4), seems relevant, the input 
size (s) can be evaluated with the given input parameters in 
the form of.

where n denotes the overall number of UEs of which one 
hierarchical UAV network takes charge, t is a system-spec-
ified batch time in the Spark DStream process, and ω is the 
input size in bytes per packet. Using s from (15) and (5)–
(8), TDP is obtained. Then, the process compares TDP and 
the object time as in (9) and (10), and the number of worker 
nodes (N2) necessary for real-time DStream processing can 
be calculated.

If there is no requested command, this algorithm can be 
performed again periodically to maintain network stability, or 

it could be used on demand when any changes are made to the 
HAP and LAP networks.

6  |   SIMULATION RESULT

6.1  |  Simulation environment

In the performance analysis, it is assumed that the initial 
preparation for DStream has been adequately set up with suf-
ficient memory, where errors in the communication and data 
processing may occur. For the simulation experiments, as-
sumptions on several experimental parameters were made as 
follows. It is presumed that every communication proceeds 
with either a radio frequency or an FSO signal, and the fre-
quency channel is in the 3 GHz band. The packet size was 
fixed at 1500 bytes per packet and the service radius of a 
UAV was set to 3  km. It is assumed that the transmitting 
power (GT) was 1 W and the receiver sensitivity (β) was 5 
mW. UAVs in the LAP moved at an average speed (v) of 
1 m/s, and the value of τ was set to 20 ms. In the DStream, 
a batch size was chosen according to the object time limit. 
Possible candidates for the DStream batch size ranged from 
0.5 s–5 s in increments of 0.5 s.

6.2  |  Simulation results

Changes in the communication success rate (Ps(v, R)) ac-
cording to the movement of the UAVs in the LAP (v) are 
shown in Figure 5. The graph shows that Ps(v, R) decreases 
as the speed of the UAVs in the LAP increases. In particu-
lar, when the service radius is small, Ps(v,R) decreases faster. 
The larger the service radius is, the higher Ps(v,R) becomes. 
It can be considered that a larger service radius leads to 
more stable communication. However, a wide service ra-
dius means that the power consumption of the UAVs and 
number of dataflows to be managed on each UAV will 
increase. Therefore, each UAV's communication success 
rate may increase, but the overall service performance may 
deteriorate.

Changes in the number of UEs (n) required within the 
service radius are in connection with parameter N1, as pre-
sented in Figure 6. When N1 is the same, a smaller λ results 
in a greater F(τ), but as N1 increases, the value of F(τ) de-
creases, and as the value of λ increases, F(τ), decreases. The 
control center and the HAP may act by adding a UE within 
the service range if F(τ) is expected to be smaller than a 
specified threshold. By adding a UAV in the LAP, the num-
ber of N1 can be reduced to maintain F(τ) above a certain 
level. If F(τ) cannot be increased above the threshold even 
if N1 is decreased, then F(τ) is increased by decreasing the 
value of λ.

(15)s=N1×n×�× t×�,
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Figures 7 and 8 illustrate the performance distribution 
of the time delay probability F(τ), according to λ and N1 
based on TCC. The horizontal plane in the middle represents 
the minimum guaranteed ratio p, which was set to p = 0.4 
in the simulation. It can be seen that F(τ) is largest when 
λ and N1 are the smallest, and F(τ) decreases as λ and N1 
increase. The range of λ and N1 that satisfy p is easily iden-
tifiable in the graph as the curved part of F(τ) above the 
p = 0.4 plane.

Figures 7 and 8 are based on μg = 1 and μg = 0.75, respec-
tively. By comparing Figures 7 and 8, it is evident that the 
peak value of F(τ) decreases as μg decreases. Likewise, for an 
equivalent value of p, the range of λ and N1 satisfying p also 
diminishes for a smaller μg value.

Figure 9 shows the difference in object time based on the 
error rate. The error rates (Peexec

, Pecommn
) in the simulation were 

set to 0.02, 0.05, and 0.08. In each case, Peexec
 and Pecommn

 were 
assumed to be the same. When comparing the performance 

based on the error rate, the difference in performance with 
OptEx is based on the fact that OptEx maintains the same 
number of worker nodes, whereas SRSAF adjusts its num-
ber of worker nodes to an optimal number based on the error 
rate experienced in the communication and DStream. Since 
SRSAF considers the extra time required to recover from er-
rors, it utilizes more worker nodes than OptEx. As shown in 
Figure 9, OptEx exceeds the object time in every case, and 
this becomes worse when the input data size increases with 
an increased batch size.

In the case of SAF, it slightly exceeds the object time. This 
is because SAF only considers the additional resources for 
the variable sharing time and communication time due to er-
rors in the processing of an RDD. However, it does not allo-
cate additional resources to compensate for errors occurring 
during communication between worker nodes and the time to 
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process the remaining RDD after an error occurs during RDD 
processing. This causes a time delay in the elapsed process-
ing time. Therefore, SAF estimates the number of necessary 
worker nodes due to processing errors, which may cause the 
object time to be exceeded.

In SRSAF, not only the processing time for error recov-
ery in DStream but also the additional time for communi-
cation error recovery between worker nodes are considered. 
In Figure 9, the SRSAF does not exceed the object time for 
any of the cases tested. Moreover, even when the batch size 
increases because SRSAF re-computes the number of worker 
nodes based on an optimized estimation of resource alloca-
tion, the scheme safely reserves a gap between the object time 
and real processing time, making the system more robust 
against sudden error events.

Figure  10 shows the relationship between N1 and the 
DStream processing time. The object time to process 

DStream is set to 0.5 s, which is the smallest value that can 
be used in Spark streaming big data systems. In the case 
of OptEx, the object time is not satisfied for any value of 
N1. In the case of SAF, all cases can be processed without 
exceeding the object time, except for N1 = 5. SRSAF does 
not exceed 0.5  s in any of the N1 cases tested. These ad-
aptations were caused by increasing the number of worker 
nodes (N2), in which SAF and SRSAF predict that the pro-
cessing time will exceed the object time due to an error. 
Figure 10 shows that the proposed SRSAF scheme can pro-
vide a smaller DStream processing time with N1 = 5, than 
when SAF uses N1 = 6. Based on Figure 10, it can be con-
cluded that SRSAF is more effective than SAF in the range 
of interest.

Figure 11 shows the relation between ψ and the elapsed 
time. The initial value of λ is 0.25. As xλ increases by 1, λ 
decreases with a proportion of (1– ψ),  where ψ is set to the 
three cases of 0.1, 0.2, and 0.3. The system error rate is fixed 
to 0.05 and the object time is set to 0.5 s.

In the case of OptEx, the elapsed time decreases when 
xλ increases. This is because the input data size also de-
creases when λ decreases. As xλ increases, λ converges to 
a certain value. However, in almost every case, regard-
less of how large xλ is set, OptEx exceeds the performance limit.

On the other hand, unlike OptEx, there are some incline 
transitions present in the performance curves of SAF and 
SRSAF. This happens because as the input data size de-
creases, SAF and SRSAF select a smaller number of worker 
nodes based on the optimal number (to satisfy the object 
time) derived. Therefore, the part where the elapsed time in-
creases (in the performance curves of SRSAF in Figure 11) 
indicates a reduction in the number of the worker nodes.

SAF has a smaller estimation time than SRSAF because it 
considers only the error time that occurs in RDD processing. 
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Therefore, the number of optimal worker nodes changes at 
a lower xλ point, and the elapsed time increases. However, 
in SAF, the object time is exceeded at the point where the 
elapsed time increases. This shows that SAF cannot suffi-
ciently predict the additional time due to errors occurring 
during processing.

In contrast, SRSAF succeeds in processing within the 
time bound in all three cases. In the same manner, when xλ 
increases, both λ and the input data size decrease, lessening 
the elapsed time.

7  |   CONCLUSION

In this paper, the SRSAF scheme was proposed to control the 
hierarchical UAV-based HAP and LAP network communica-
tion and DStream process in real time based on the time bound 
set for the control operation and data services. In a network 
environment where the UAVs in the HAP serve as a back-
haul backbone network and the UAVs in the LAP serve as the 
BSs, the proposed SRSAF scheme makes it possible to obtain 
the optimal number of dataflows and input data rates that can 
be processed within the real-time operation bounds. Based on 
the optimum input data rate, the proposed scheme computes 
the optimal number of worker nodes required considering the 
error rates. The results show that the SRSAF scheme can pro-
vide a reliable performance that satisfies the required perfor-
mance bounds for the parameter range of interest and exceeds 
the performance of the OptEx and SAF schemes.
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