References
- C. V. Wright et al., Language identification of encrypted VoIP traffic: Alejandra y Roberto or Alice and Bob?, in Proc. USENIX Security Symp. USENIX Security Symp., Moston, MA, USA, Aug. 2007, Article no. 4.
- C. V. Wright et al., Spot me if you can: Uncovering spoken phrases in encrypted VoIP conversations, in IEEE Symp. Security Privacy, Oakland, CA, USA, May 2008, pp. 35-49, https://doi.org/10.1109/SP.2008.21.
- B. Anderson, S. Paul, and D. McGrew, Deciphering malware's use of TLS without decryption, arXiv, 2016. https://arxiv.org/abs/1607.01639.
- C. V. Wright, F. Monrose, and G. M. Masson, On inferring application protocol behaviors in encrypted network traffic, J. Mach. Learning Research 7 (2006), 2745-2769.
- J. Sherry et al., BlindBox: Deep Packet Inspection over Encrypted Traffic, in Proc. ACM Conf. Special Interest Group Data Commun., London, UK, Aug. 2015, pp. 213-226.
- Q. Sun et al., Statistical identification of encrypted web browsing traffic, in Proc.IEEE Symp. Security Privacy Berkeley, CA, USA, May 2002, pp. 1-12.
- M. Liberatore and B. N. Levine, Inferring the source of encrypted HTTP connections, in Porc. ACM Confe. Comput. Commun. Security, Alexandria, VA, USA, 2006, pp. 255-263.
- R. Schuster, V. Shmatikov, and E. Tromer, Beauty and the burst: Remote identification of encrypted video streams, in Proc.USENIX Security Symp., Vancuver, Canada, 2017, pp. 1357-1374.
- D. X. Son, D. Wagne, and X. Tian, Timing analysis of keystrokes and timing attacks on SSH, in Proc. USENIX Security Symp., Washington, DC, USA, Aug. 2001, Article no. 25.
- P. Dorfinger, G. Panholzer, and W. John, Entropy estimation for real-time encrypted traffic identification, in Proc. Int. Workshop Traffic Monitoring Analysis, Vienna, Austria, 2011, pp. 164-171. https://doi.org/10.1007/978-3-642-20305-3_14.
- A. Moore, D. Zuev, and M. Crogan, Discriminators for use in flow-based classification, Department of Computer Science Research Reports; RR-05-13, 2005.
- P. Velan et al., A survey of methods for encrypted traffic classification and analysis, Int. J. Netw. Manag. 25 (2015), 1-24. https://doi.org/10.1002/nem.1882
- D. J. Arndt and A. N. Zincir-Heywood, A comparison of three machine learning techniques for encrypted network traffic analysis, in IEEE Symp. Computat. Intell. Security Defense Applicat. Paris, France, Apr. 2011, https://doi.org/10.1109/CISDA.2011.5945941.
- T. T. Nguyen and G. Armitage, A survey of techniques for Internet traffic classification using machine learning, IEEE Commun. Surveys Tutor. 10 (2008), 56-76. https://doi.org/10.1109/SURV.2008.080406.
- J. Zhang et al., Network traffic classification using correlation information, IEEE Trans. Parallel Distrib. Syst. 24 (2012), 104-117. https://doi.org/10.1109/TPDS.2012.98.
- A. Finamore et al., KISS: Stochastic packet inspection classifier for UDP traffic, IEEE/ACM Trans. Netw. 18 (2010), 1505-1515. https://doi.org/10.1109/TNET.2010.2044046.
- B. Anderson, S. Paul, and D. McGrew, Deciphering malware's use of TLS, [without decryption] J. Comput. Virology Hacking Techn. 14 (2018), 195-211. https://doi.org/10.1007/s11416-017-0306-6
- J. A. Bonachela, H. Hinrichsen, and M. A. Munoz, Entropy estimates of small data sets, J. Phys. A: Math. Theor. 41 (2008), 1-9.
- J. Goubault-Larrecq and J. Olivain, Detecting Subverted Cryptographic Protocols by Entropy Checking, Research Report LSV-06-13, 2006, INRIA Futurs projet SECSI.
- L. Paninski, Estimation of entropy and mutual information, Neural Computation, Neural Comput. 15 (2003), 1191-1253. https://doi.org/10.1162/089976603321780272
- M. Lotfollahi et al., Deep Packet: A novel approach for encrypted traffic classification using deep learning, Soft Comput. (2019), 1-14, https://doi.org/10.1007/s00500-019-04030-2.
- G. D. Gil et al., Characterization of encrypted and VPN traffic using time-related features, in Proc. Int. Conf. Inform. Syst. Security Privacy, 2016 pp. 407-414, https://doi.org/10.5220/0005740704070414.
- B. Yamansavascilar et al., Application identification via network traffic classification, in Proc. Int. Conf. Comput., Netw. Commun., Santa Clara, CA, USA, Jan. 2017, https://doi.org/10.1109/ICCNC.2017.7876241.
- B.-H. Asa et al., Support vector clustering, J. Mach. Learn. Research 2 (2001), 125-137.
- T. K. Ho et al., The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998), 832-844. https://doi.org/10.1109/34.709601
- I. Rish, An empirical study of the naive Bayes classifier, IJCAI Workshop Empirical Methods AI 3 (2001), 41-46.
- G. Aceto et al., Multi-classification approaches for classifying mobile app traffic, J. Netw. Comput. Applicat. 103 (2018), 131-145. https://doi.org/10.1016/j.jnca.2017.11.007
- G. Aceto et al., Mobile encrypted traffic classification using deep learning: Experimental evaluation, lessons learned, and challenges, IEEE Trans. Netw. Service Manag. 16 (2019), 445-458. https://doi.org/10.1109/TNSM.2019.2899085
- G. Aceto et al., Anonymity services Tor, I2P, JonDonym: Classifying in the Dark (Web), IEEE Trans. Dependable Secure Comput. (2018), Early Access.
- V. F. Taylor et al., Appscanner: Automatic fingerprinting of smartphone apps from encrypted network traffic, in Proc. IEEE Eur. Symp. Security Privacy (EuroS&P), Saarbrucken, Germany, Mar. 2016, pp. 439-454.
- S. Rezaei and X. Liu, Deep learning for encrypted traffic classification: An overview, IEEE Commun. mag. 57(2019), 76-81.
- M. Lotfollahi et al., Deep packet: A novel approach for encrypted traffic classification using deep learning, Springer, Berlin Heidelberg, Soft Computing, 2019, pp. 1-14.
- G. Aceto et al., Mobile encrypted traffic classification using deep learning, in Proc. Netw. Traffic Measurement Analysis Conf., Vienna, Austria, June 2018, pp. 1-8.
Cited by
- Classification of FPGA Based Network Traffic Using Machine Learning vol.1964, pp.6, 2021, https://doi.org/10.1088/1742-6596/1964/6/062008
- Real-time photoplethysmographic heart rate measurement using deep neural network filters vol.43, pp.5, 2020, https://doi.org/10.4218/etrij.2020-0394