Acknowledgement
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 '범부처 Giga KOREA 사업'의 지원을 받아 수행된 연구임[No. GK20D0100, 디지털 홀로그래픽 테이블탑형 단말 기술 개발].
References
- J. Geng, "Three-dimensional display technologies," Adv. Opt. Photon., vol. 5, no. 4, 2013, pp. 456-535. https://doi.org/10.1364/AOP.5.000456
- E. H. Adelson and J. R. Bergen, "The plenoptic function and the elements of early vision," Computational Models of Visual Processing, MIT press, Cambridge, MA, USA, 1991, pp. 3-20.
- D. Gabor, "A new microscopic principle," Nature, vol 161, 1948, pp. 777-778. https://doi.org/10.1038/161777a0
- M. Levoy and P. Hanrahan, "Light field rendering," in Proc. Annu. Conf. Comput. Graphics Interactive Techn. (SIGGRAPH), New Orleans, LA, USA, 1996, pp. 1-12.
- Assignment 3: Light Field Camera, https://graphics.stanford.edu/courses/cs348b/article/6
- Y. Lu et al., "Watermarking scheme for microlens array based four dimensional light field imaging," Appl. Opt., vol. 55, no. 13, 2016, pp. 3397-3404. https://doi.org/10.1364/AO.55.003397
- G. Wetzstein et al., "Tensor displays: compressive light field synthesis using multiplayer displays with directional backlighting," ACM Trans. Graph., vol. 31, no. 4, 2020, Article no. 80.
- H. S. LEE et al., "Large-area Ultra-high Density 5.36" 10Kx6K 2250 ppi Display," SID Symp. Digest Technical Papers, vol. 49, no. 1, 2018, pp. 607-609.
- 삼성디스플레이 뉴스룸, "[디스플레이 톺아보기] (22) 3D 디스플레이의 종류와 원리," Feb. 2018. http://news.samsungdisplay.com/12916
- R. Ng et al., "Light Field Photography with a Hand-held Phenoptic Camera," Stanford Tech Report CTSR 2005-02.
- K. Aksit, J. Kautz, and D. Luebke, "Slim near-eye display using pinhole aperture arrays," Appl. Opt., vol. 54, no. 11, 2015, pp. 3422-3427. https://doi.org/10.1364/AO.54.003422
- P. Chou et al., "Hybrid light field head mounted display using time multiplexed liquid crystal lens array for resolution enhancement," Opt. Express, vol. 27, no. 2, 2019, pp. 1164-1177. https://doi.org/10.1364/OE.27.001164
- Holoeye homepage, https://holoeye.com
- J. H. Choi et al., "Evolution of spatial light modulator for high‐definition digital holography," ETRI J., vol. 41, no. 1, 2019. pp. 23-31. https://doi.org/10.4218/etrij.2018-0523
- J. H. Choi et al., "The new route for realization of 1-um-pixelpitch high-resolution displays," J. Soc. Inf. Display, vol. 27, no. 8, 2019, pp. 487-496. https://doi.org/10.1002/jsid.821
-
Y. H. Kim et al., "Crafting a
$1.5{\mu}m$ pixel pitch spatial light modulator using$Ge_2Sb_2Te_5$ phase change material," J. Opt. Soc. Am. A., vol. 36, no. 12, 2019, pp. D23-D30. https://doi.org/10.1364/JOSAA.36.000D23 - H. G. Choo et al., "Fourier digital holography of real scenes for 360 tabletop holographic display," App. Opt., vol. 58, no. 34, 2019, pp. G96-G103. https://doi.org/10.1364/AO.58.000G96
- J. Park et al., "Ultra wide-angle large-area digital 3D holographic display using a non-periodic photon sieve," Nat. Commun., vol. 10, no. 1, 2019. pp. 1-8. https://doi.org/10.1038/s41467-018-07882-8
- R. Kang et al., "Curved multiplexing computer-generated hologram for 3D holographic display," Opt. Express, vol. 27, no. 10, 2019, pp. 14369-14380. https://doi.org/10.1364/OE.27.014369
- Y. Sando et al., "Super-wide viewing-zone holographic 3D display using a convex parabolic mirror," Sci. Rep. vol. 8, 2018, Article no. 11333.
- Sony, "Sony RayModeler, a 360-Degree Autostereoscopic Display Prototype," July 19, 2010. https://www.youtube.com/watch?v=6BFKC-NKRFw
- K. Langhans et al, "Solid FELIX: a static volume 3D-laser display," Proc. SPIE vol. 5006, 2003, pp. 161-174.
- H. H. Refai, "Static volumetric three-dimensional display," J. Disp. Technol., vol. 5, no. 10, 2009, pp. 391-397. https://doi.org/10.1109/JDT.2009.2027911
- I. I. Kim et al., "Three-dimensional volumetric display in rubidium vapor," Proc. SPIE, vol. 2650, 1996, pp. 274-284.
- L. Valich, "Researchers use lasers to display 'true' 3-D objects," University of Rochester Newscenter, June 29, 2017. https://www.rochester.edu/newscenter/researchers-use-lasersdisplay-true-3-d-objects/
- B. Zhu et al., "A volumetric full-color display realized gy frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals," NPG Asia Mater., vol. 9, 2017, Article no. e394.
- LightSpace Technologies Homepage, www.lightspace3d.com
- K. Perlin and J. Y. Han, "Volumetric display with dust as the participating medium" US 6,997,558 B2, 2006.
- H. Kimura et al., "Laser produced 3D display in the air," in Proc. SIGGRAPH '06: ACM SIGGRAPH 2006 Emerging Technol., Boston, MA, USA, July, 2006. https://doi.org/10.1145/1179133.1179154
- Y. Ochiai et al., "Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields," ACM Trans. Graph., vol. 35, no. 2, 2016, Article no. 17.
- D. E. Smalley et al., "A photophoretic-trap volumetric display," Nature, vol. 553, 2018, pp. 486-490. https://doi.org/10.1038/nature25176
- W. Rogers, "Improving photophoretic trap volumetric displays," Appl. Opt., vol. 58, no. 34, 2019, pp. G363-G369. https://doi.org/10.1364/AO.58.00G363
- R. Hirayama et al., "A volumetric display for visual, tactile and audio presentation using acoustic trapping," Nature, vol. 575, 2019, pp. 320-323. https://doi.org/10.1038/s41586-019-1739-5
- K. Aksit et al., "Near-Eye Varifocal Augmented Reality Display using See-Through Screens," ACM Trans. Graph., vol. 36, no. 6, 2017. Article no. 1.
- R. Zabels et al., "AR Displays: Next-Generation Technologies to Solve the Vergence-Accomodation Conflict," Appl. Sci., vol. 9, no. 15, 2019. pp. 1-17,
- D. Lanman et al., "Near-Eye Light Field Display," ACM Trans. Graph., vol. 32, no. 6, 2013, Article no. 220.
- A. Maimone et al., "Holographic Near-Eye Displays for Virtual and Augmented Reality," ACM Trans. Graph., vol. 36, no. 4, 2017, Article no. 85.
- Real view homepage. http://realviewimaging.com