DOI QR코드

DOI QR Code

광대역 테라헤르츠 검출 소자 기술 동향

Trends in Broadband Terahertz Detector Technology

  • 발행 : 2020.08.01

초록

The terahertz (THz) region lies in between the millimeter and infrared spectral bands. A THz wave has the characteristics of non-invasiveness and non-ionization due to low photon energies, while having high penetrability in dielectrics. In addition, since the resonance frequencies of various molecules are included in the THz band, research on the application of spectral analysis and non-destructive testing has been widely studied. Towards this end, the research and development of THz detectors has become increasingly important in order to assess their applications in different areas such as astronomy, security, industrial non-destructive evaluations, biological applications, and wireless communications. In this report, we summarize the operating principles, characteristics, and utilization of various broadband technologies in THz detection devices. Further, we introduce the development status of our Schottky barrier diode technology as one of the broadband THz detectors that can be easily adopted as direct detectors in many fields of applications.

키워드

참고문헌

  1. D. Sengupta et al., "Centennial of the Semiconductor Diode Detector," Proc. IEEE , vol. 86, no. 1, 1998, pp. 235-243. https://doi.org/10.1109/5.658775
  2. T. Otsuji et al., "Trends in the Research of Modern Terahertz Detectors: Plasmon Detectors," IEEE Trans. Terahertz Sci. Tchnol. , vol. 5, no. 6, 2015, pp. 1110-1120.
  3. P. H. Siegel, "Terahertz Technology," IEEE Trans. Microwave Theory Tech. , vol. 50, no. 3, 2002, pp. 910-928. https://doi.org/10.1109/22.989974
  4. R. A. Lewis, "A Review of Terahertz Detectors," J. Phys. D: Appl. Phys. vol. 52, 2019, p. 433001. https://doi.org/10.1088/1361-6463/ab31d5
  5. M. Dyakonov, "Shallow Water Analogy for a Ballistic Field Effect Transistor: New Mechnism of PLasma Wave Generation by dc Current," Phys. Re.v. Lett. , vol. 71, 1993, pp. 2465-2468. https://doi.org/10.1103/PhysRevLett.71.2465
  6. K. Moon et al., "Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition," Opt. Lett. , vol. 38, 2013, pp. 5466-5469. https://doi.org/10.1364/OL.38.005466
  7. K. Moon et al., "Generation and Detection of Terahertz Waves using Low-Temperature-Grown GaAs with an Annealing Process," ETRI J. , vol. 36, 2014, pp. 159-162. https://doi.org/10.4218/etrij.14.0213.0319
  8. R. B. Kohlhaas et al., "photoconductive terahertz detectors with 105 dB peak dynamic range made of rhodium doped InGaAs," Appl. Phys. Lett. , vol. 114, 2019, p. 221103. https://doi.org/10.1063/1.5095714
  9. A. Rogalski et al., "Terahertz detectors and focal plane arrays," Opto-Electron. Rev. , vol. 19, no. 3, 2011, pp. 346-404.
  10. E. T. Young et al., "Far-infrared Imaging Array for SIRTF," Proc. SPIE , vol. 3354, 1998, pp. 57-65.
  11. A. Poglitsch et al., "the Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Laboratory," Proc. SPIE , vol. 7010, 2008, p. 701005. https://doi.org/10.1117/12.790016
  12. R. Mills et al., "Evolution of Large Format Impurity Band Conductor Focal Plane Arrays for Astronomy Applications," Proc. SPIE , vol. 8154, 2011, p. 81540.
  13. H. C. Liu et. al., "Terahertz Quantum Well Photodetectors," IEEE J. SEl. Top. Quant. , vol. 14, 2008, pp. 374-377. https://doi.org/10.1109/JSTQE.2007.910710
  14. A. G. U. Perera et al., "Semiconductor Terahertz Detectors and Absorption Enhancement using Plasmons," Microelectron. J. , vol. 39, 2008, pp. 601-606. https://doi.org/10.1016/j.mejo.2007.07.086
  15. H. C. Liu, "Quantum Dot Infrared Photodetector," Opto-Electron. Rev. , vol. 11, 2003, pp. 1-5.
  16. O Astafiev et al., "Single-photon Detector in the Microwave Range," Appl. Phys. Lett. , vol. 80, no. 22, 2002, pp. 4250-4252. https://doi.org/10.1063/1.1482787
  17. R. J. Schoelkopf et al., "A Concept for a Submillimeter-Wave Single-Photon Counter," IEEE Trans. Appl. supercond. , vol. 9, no. 2, 1999, pp. 2935-2939. https://doi.org/10.1109/77.783645
  18. J. J. A. Baselmans et al., "A Kilo-Pixel Imaging System for Future Space based Far-Infrared Observatories using microwave Kinetic Inductance Detectors," A&A. , vol. 601, A89, 2017, pp. 1-16.
  19. F. F. Sizov et al., "Uncooled Detectors Challenges for THz/sub-THz Arrays Imaging," J. Infrared Milli. Terahz. Waves, vol. 32, no. 32, 2011, pp. 1192-1206. https://doi.org/10.1007/s10762-011-9789-2
  20. https://www.swissterahertz.com/
  21. F. Sizov et al., "Terahertz Radiation Detectors: the state-ofthe-art," Semicond. Sci. Technol. , vol. 33, 2018, p. 123001. https://doi.org/10.1088/1361-6641/aae473
  22. H. A. Zahl et al., "Pneumatic Heat Detector," Rev. Sci. Instrum. , vol. 17, no. 11, 1946, pp. 511-515. https://doi.org/10.1063/1.1770416
  23. D. R. Denison et. al., "Experimental Characterization of mmwave Detection by a Micro-Array of Golay Cells," Proc. SPIE, vol. 7309, 2009, p. 73090J.
  24. J.-Q. Lu et al., "Terahertz Detector Utilizing Two-Dimensional Electronic Fluid," IEEE Electron Dev. Lett. , vol. 19, no. 10, 1998, pp. 373-375. https://doi.org/10.1109/55.720190
  25. Y. Kurita et al., "Ultrahigh Sensitive Sub-Terahertz Detection bu InP-Based asymmetric dual-grating-gate HEMTs and their broadband characteristics," Appl. Phys. Lett. , vol., 104, 2014, p. 251114. https://doi.org/10.1063/1.4885499
  26. E. Öjefors et al., "A 0.65THz focal-plane array in a quartermicron CMOS technology," IEEE J. Solid-St. Circ. , vol.44, no. 8, 2009, pp. 1968-1976. https://doi.org/10.1109/JSSC.2009.2021911
  27. https://www.vadiodes.com/en/
  28. https://terasense.com/products/detectors/
  29. https://acst.de/
  30. https://www.teratechcomponents.com/TTC/
  31. MIL-STD-883E,"Test Method Standard Microcircuit,"
  32. E. S. Lee et al., "Semiconductor-Based Terahertz Photonics for Industrial Applications," J. Lightwave Technol. , vol. 36, no. 2, 2018, pp. 274-283. https://doi.org/10.1109/JLT.2017.2786260
  33. F. Sizov, "THz radiation sensors," Opto-Electron. Rev. , vol. 18, no. 1, 2013, pp. 10-36.
  34. https://sequestim.com/news/
  35. A. Rogalski, "Semiconductor Detectors and Focal Plane Arrays for Far-Infrared Imaging," Opto-Electron. Rev. , vol. 21, no. 4, 2013, pp. 406-426. https://doi.org/10.2478/s11772-013-0110-x