Dental application of glass-ceramic materials for aesthetic restoration

심미수복을 위한 글라스-세라믹 재료의 치과 응용

  • Bae, Tae Sung (Department of Dental Biomaterials, School of Dentistry, Chonbuk National University)
  • 배태성 (전북대학교 치과대학 치과생체재료학교실)
  • Published : 2020.06.30

Abstract

Porcelain is the first ceramic material to be introduced into dentistry. Porcelain jacket crown was introduced by Dr. Charles H Land in 1886, which was an excellent aesthetic dental restoration but has not been widely used due to high firing shrinkage and low tensile strength. Then metal-ceramic system, which combines the esthetic properties of ceramics and the mechanical properties of metals, was introduced and nowadays it is still used in dental clinical field. However, the metal-ceramic system has shown some problems, such as increased lightness by reflection of light at opaque layer, shadow beneath the gingival line due to the block-out of light by metal coping, exposure of metal in margin part, bond failure between metal and porcelain, oxidation of metal coping during firing the porcelain, etc. Recently, along with the advance of fabrication methods of dental ceramics, the all-ceramic restorations with high esthetic and mechanical properties has increased and gradually replaced metal-ceramic restorations. Especially, CAD/CAM technology has opened a new era in fabricating the dental ceramic restorations. This overview will take a look at the past, present and future possibility of the dental ceramic materials.

치과의사가 수복재료를 선택하고 환자에게 추천할 때는 수복할 치아 위치, 결손 정도, 환자의 심미적 요구도, 저작력, 나이, 경제적 여건 등 여러 가지의 요인을 고려한다. 그렇지만, 수복재료를 선택할 때의 일차적인 기준은 구강 내에서 기능 시 작용하는 교합력을 최우선으로 고려해야 한다. 미국 국립보건원(NIH) 지원으로 조사된 연구 결과에 의하면, 전치부 수복재료로서는 리튬 디실리케이트계 글라스-세라믹이 54%, layered zirconia가 17%, 루사이트 강화 글라스-세라믹이 13% 순을 보여, 전치부 수복재료로서 리튬 디실리케이트계 글라스-세라믹이 가장 많이 사용었다. 또한 구치부 수복재료로서는 단일구조 지르코니아가 32%, 금속-세라믹이 31%, 리튬 디실리케이트계 글라스-세라믹이 21% 순을 나타냈다. 세라믹 수복 재료의 특성을 살펴보면, 단일구조 지르코니아는 강도는 높지만 명도가 높고 저온열화로 인한 강도 저하가 일어날 수 있다. layered zirconia는 심미성은 우수하지만 강도가 낮은 비니어 세라믹의 칩핑과 박리가 문제가 되고 있다. 리튬 디실리케이트계 글라스-세라믹은 심미성은 우수하지만 지르코니아에 비해 강도가 낮으므로 구치부에 적용 시 파절이 일어날 위험성이 있다. 루사이트계 글라스-세라믹은 심미성은 우수하지만 기본적으로 강도가 낮기 때문에 전치부에 한정하여 적용한다. 세라믹 크라운이 구치부 교합력에 저항하기 위해서는 350 MPa 이상의 굴곡강도를 가져야 한다. 리튬 디실리케이트계 글라스-세라믹은 광투과성이 양호한 심미성이 있는 재료이므로 비니어 없이 전치부에 적용할 수 있고, 굴곡강도가 400 MPa 이상이므로 구치부 교합력에 저항할 수 있고, HF에 의한 산부식과 실란(silane) 처리가 가능하므로 레진과 강한 결합력을 얻을 수 있고, 또한 포세린에 비해 대합치의 마모가 적다. 이러한 점들을 고려하면 리튬 디실리케이트계 글라스-세라믹 재료는 전구치부의 단일치 수복에 적합한 성질을 갖고 있음을 알수 있다. 그렇지만 그의 임상 응용이 더욱 증가하기 위해서는 이들 재료에 대한 보다 많은 연구와 이해가 필요하리라고 생각된다.

Keywords

References

  1. Land CH. Porcelain dental art: No II, Dent Cosmos 1903;45:615-620.
  2. Piddock V, Qualtrough. Dental ceramics-an update. J Dent 1990;18:227-235. https://doi.org/10.1016/0300-5712(90)90019-B
  3. Rosenblum MA, Schulman A. A review of all ceramic restorations. J Am Dent Assoc 1997;128:297-307. https://doi.org/10.14219/jada.archive.1997.0193
  4. Anusavice KJ. Phillips' Science of Dental Materials. 11th ed, Saunders 2003;337-349.
  5. Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent 2004;92:557-562. https://doi.org/10.1016/j.prosdent.2004.09.015
  6. Adair PJ, Grossman DG. The castable ceramic crown. Int J Peviodont Rest Dent 1984;2:33-45.
  7. Southan, DE, Jorgensen KD. Precise porcelain jacket crowns. Aust Dent J 1972;18:152-156. https://doi.org/10.1111/j.1834-7819.1973.tb03452.x
  8. Malament KA, Socransky SS. Survival of Dicor glass-ceramic dental restorations over 14 years: part I. Survival of Dicor complete coverage restorations and effect of internal surface acid etching, tooth position, gender and age. J Prosthet Dent 1999;81:23-32. https://doi.org/10.1016/S0022-3913(99)70231-3
  9. Sjogren G, Lantto R, Tillberg A. Clinical evaluation of all-ceramic crowns (Dicor) in general practice. J Prosthet Dent 1999;81:277-84. https://doi.org/10.1016/S0022-3913(99)70269-6
  10. Scharer P, Sato T, Wohlwend A. A comparison of the marginal fit of three cast ceramic crown systems. J Prosthet Dent 1988;59:534-542. https://doi.org/10.1016/0022-3913(88)90065-0
  11. Beham G. IPS-Empress: A new ceramic technology. Ivoclar-Vivadent Report 1990;6:1-13.
  12. Gorman CM, McDevitt WE, Hill RG. Comparison of two heat-pressed all-ceramic dental materials. Dent Mater 2000;16:389-395. https://doi.org/10.1016/S0109-5641(00)00031-2
  13. Holand W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res (Appl Biomater) 2000;53:297-303. https://doi.org/10.1002/1097-4636(2000)53:4<297::AID-JBM3>3.0.CO;2-G
  14. Lim CH, Shin JW, Seok JJ, Ji JH, Lee MH, Bae TS. Effect of repeat processing on mechanical properties of two pressable glass-ceramic dental materials. J Korean Res Soc Dent Mater 2014;41:1-8.
  15. Tang X, Tang C, Su H, Luo H, Nakamura T, Yatani H. The effects of repeated heat-pressing on the mechanical properties and microstructure of IPS e.max Press. J Mech Behav Biomed Mater 2014;40:390-396. https://doi.org/10.1016/j.jmbbm.2014.09.016
  16. Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater 2011;27:97-108. https://doi.org/10.1016/j.dental.2010.10.018
  17. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 2008;204(9):505-11. https://doi.org/10.1038/sj.bdj.2008.350
  18. Shenoy A, Shenoy N. Dental ceramics: An update. J Conserv Dent 2010;13:195-203. https://doi.org/10.4103/0972-0707.73379
  19. Erdelt K, Engler MLPD, Beuer F, Guth J-F, Liebermann A, Schweiger J. Computable translucency as a function of thickness in a multi-layered zirconia. J Prosthet Dent 2018;121:683-689. https://doi.org/10.1016/j.prosdent.2018.08.013
  20. Hamed JG, Bakry SI, Hussein SA, Al Abbassy FH. Evaluation of biaxial flexural strength and translucency of multichromatic translucent zirconia and lithium disilicate ceramics. Alexandria Dental Journal 2018;43:86-93. https://doi.org/10.21608/adjalexu.2018.57637
  21. Elsaka SE. Optical and mechanical properties of newly developed monolithic multilayer zirconia, J Prosthodont 2019;28:e279-e284. https://doi.org/10.1111/jopr.12730
  22. Lambert H, Durand J-C, Jacquot B, Fages M. Dental biomaterials for chairside CAD/CAM: State of the art. J Adv Prosthodont 2017;9:486-495. https://doi.org/10.4047/jap.2017.9.6.486
  23. Kelly JR, Benetti P. Ceramic materials in dentistry: historical evolution and current practice. Aust Dent J 2011;56:84-96. https://doi.org/10.1111/j.1834-7819.2010.01299.x
  24. Gresnigt M, Ozcan M, Houten MLA, Schipper L, Cune MS. Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dent Mater 2016;32:607-614. https://doi.org/10.1016/j.dental.2016.01.004
  25. Nawafleh N, Hatamleh M, Elshiyab S, Mack F. Lithium disilicate restorations fatigue testing parameters: A systematic review. J Prosthodont 2016;25:116-26. https://doi.org/10.1111/jopr.12376
  26. Denry I, Holloway JA. Ceramics for dental applications: A review. Materials 2010;3:351-368. https://doi.org/10.3390/ma3010351
  27. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: Laboratory and clinical performance. Dent Clin N Am 2011;55:333-352. https://doi.org/10.1016/j.cden.2011.01.005
  28. Zhang Y, Kelly JR. Dental ceramics for restoration and metal veneering. Dent Clin N Am 2017;61:797-819. https://doi.org/10.1016/j.cden.2017.06.005
  29. Fonzar RF, Carrabba M, Sedda M, Ferrari M, Goracci C, Vichi A. Flexural resistance of heat-pressed and CAD-CAM lithium disilicate with different translucencies. Dent Mater 2017;33:63-70. https://doi.org/10.1016/j.dental.2016.10.005
  30. Yin R, Jang YS, Lee MH, Bae TS. Comparative evaluation of mechanical properties and wear ability of five CAD/CAM dental blocks. Materials 2019;12:2252. https://doi.org/10.3390/ma12142252
  31. Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Biomater 2016;32:e275-e283. https://doi.org/10.1016/j.dental.2016.08.222
  32. Jang YS, Noh HR, Lee MH, Lim MJ, Bae TS. Eects of lithium disilicate reinforced on bond and fracture strengths of bilayered zirconia all-ceramic crown. Materials 2018;11:77. https://doi.org/10.3390/ma11010077
  33. Lim CH, Jang YS, Lee MH, Bae TS. Evaluation of fracture strength for single crowns made of the different types of lithium disilicate glass-ceramics. Odontology 2020;108:231-239. https://doi.org/10.1007/s10266-019-00460-4
  34. Jang YS, Oh SH, Oh WS, Lee MH, Lee JJ, Bae TS. Eects of liner-bonding of implant-supported glass-ceramic crown to zirconia abutment on bond strength and fracture resistance. Materials 2019; 12:2798. https://doi.org/10.3390/ma12172798
  35. Makhija SK, Lawson NC, Gilbert GH, Litaker MS, McClelland JA, Louis DR, Gordan VV, Pihlstrom DJ, Meyerowitz C, Mungia R, McCracken MS. Dentist material selection for single-unit crowns: Findings from the National Dental Practice-Based Research Network. J Dent 2016;55:40-47. https://doi.org/10.1016/j.jdent.2016.09.010
  36. 3M ESPE. All ceramic system. Technical product profile. 6.
  37. Obama Tadakazu 저, 장세원 역. 전치부 심미수복: 자연치 편. 한국퀸테센스출판(주) 2007;25-27.