참고문헌
- (2019), Islamic Republic of Iran, Planning and Budget Organization, Bureau of Technical Execution system,DOI.
- Ahmad, S., Khan, S.A., Pilakoutas, K. and Khan, Q.U.Z. (2015), "Empirical vulnerability assessment of the non-engineered reinforced concrete structures using the Kashmir earthquake damage data", Bull. Earthq. Eng., 13(9), 2611-2628. https://doi.org/10.1007/s10518-015-9735-0.
- Altunisik, A.C., Kanbur, B. and Genc, A.F. (2015), "The effect of arch geometry on the structural behavior of masonry bridges", Smart Struct. Syst. 16(6), 1069-1089. http://dx.doi.org/10.12989/sss.2015.16.6.1069.
- Amiri, G.G., Lahiji, N.P. and Darvishan, E. (2014), "Effects of in- cycle strength degradation on collapse capacity of steel moment frames", Struct. Des. Tall Spec. Build., 23(11), 801-813. https://doi.org/10.1002/tal.1072.
- Barbieri, D.M. (2019), "Two methodological approaches to assess the seismic vulnerability of masonry bridges", J. Traffic Transport. Eng. 6(1), 49-64. https://doi.org/10.1016/j.jtte.2018.09.003.
- Committee, S.J.V.G.D. and Agency, U.S.F.E.M. (2000), Recommended postearthquake evaluation and repair criteria for welded steel moment-frame buildings, FEMA 352.
- Federal Emergency Management Agency (2000), Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings. FEMA.
- Cornell, C., Jalayer, F., Hamburger, R. and Foutch, D. (2002), "The probabilistic basis for the 2000 SAC/FEMA steel moment frame guidelines", ASCE Journal of Structural Engineering. 128(4), 526-533. DOI. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526)
- da Porto, F., Tecchio, G., Zampieri, P., Modena, C. and Prota, A. (2016), "Simplified seismic assessment of railway masonry arch bridges by limit analysis", Struct. Infrastruct. Eng., 12(5), 567-591. https://doi.org/10.1080/15732479.2015.1031141.
- Di Sarno, L., da Porto, F., Guerrini, G., Calvi, P., Camata, G. and Prota, A. (2018), "Seismic performance of bridges during the 2016 Central Italy earthquakes", Bull. Earthq. Eng., 1-33. https://doi.org/10.1007/s10518-018-0419-4.
- Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Quarterly Appl. Mathem., 10(2), 157-165. https://doi.org/10.1090/qam/48291
- Elnashai, A.S., Borzi, B. and Vlachos, S. (2004), "Deformationbased vulnerability functions for RC bridges", Struct. Eng. Mech., 17(2), 215-244. https://doi.org/10.12989/sem.2004.17.2.215
- FEMA (2009), Quantification of Building Seismic Performance Factors, FEMA P695.
- Gullu, H. and Jaf, H.S. (2016), "Full 3D nonlinear time history analysis of dynamic soil-structure interaction for a historical masonry arch bridge", Environment. Earth Sci., 75(21), 1421. https://doi.org/10.1007/s12665-016-6230-0.
- Haciefendioglu, K., Basaga, H.B. and Banerjee, S. (2017), "Probabilistic analysis of historic masonry bridges to random ground motion by Monte Carlo Simulation using Response Surface Method", Construct. Build. Mater., 134 199-209. https://doi.org/10.1016/j.conbuildmat.2016.12.101.
- Haselton, C.B., Goulet, C.A., Mitrani-Reiser, J., Beck, J.L., Deierlein, G.G., Porter, K.A., Stewart, J.P. and Taciroglu, E. (2008), "An assessment to benchmark the seismic performance of a code-conforming reinforced-concrete moment-frame building", Pacific Earthq. Eng. Res. Center.
- Hazus-MH, H. M. (2003). MR1 technical and user's manualmulti-hazard loss estimation methodology.
- Hwang, H., Jernigan, J.B. and Lin, Y.W. (2000), "Evaluation of seismic damage to Memphis bridges and highway systems", J. Bridge Eng., 5(4), 322-330. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:4(322).
- Homaei, F. and Yazdani, M. (2020), "The probabilistic seismic assessment of aged concrete arch bridges: The role of soilstructure interaction", Struct., 28 894-904. https://doi.org/10.1016/j.istruc.2020.09.038.
- Jahangiri, V. and Shakib, H. (2018), "Seismic risk assessment of buried steel gas pipelines under seismic wave propagation based on fragility analysis", Bull. Earthq. Eng., 16(3), 1571-1605. https://doi.org/10.1007/s10518-017-0260-1.
- Jahangiri, V. and Yazdani, M. (2020), "Seismic reliability and limit state risk evaluation of plain concrete arch bridges", Struct. Infrastruct. Eng., 1-21. https://doi.org/10.1080/15732479.2020.1733030.
- Jahangiri, V., Yazdani, M. and Marefat, M.S. (2018), "Intensity measures for the seismic response assessment of plain concrete arch bridges", Bull. Earthq. Eng., 16(9), 4225-4248. https://doi.org/10.1007/s10518-018-0334-8.
- Jalayer, F. and Cornell, C. (2009), "Alternative non-linear demand estimation methods for probability-based seismic assessments", Earthq. Eng. Struct. Dyn., 38(8), 951-972. https://doi.org/10.1002/eqe.876.
- Jalayer, F. and Cornell, C.A. (2003), "A technical framework for probability-based demand and capacity factor (DCFD) seismic formats", RMS.
- Kamath, A.P. (2017), Seismic risk assessment of masonry arch bridges in the United States, Master Dissertatin, Clemson University.
- Kramer, S. (2008), "Performance-based earthquake engineering: opportunities and implications for geotechnical engineering practice", Geotech. Earthq. Eng. Soil Dyn. IV, ASCE GSP. 181. https://doi.org/10.1061/40975(318)213.
- Kwon, O.S. and Elnashai, A. (2006), "The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure", Eng. Struct., 28(2), 289-303. https://doi.org/10.1016/j.engstruct.2005.07.010.
- Lu, D., Yu, X., Jia, M. and Wang, G. (2014), "Seismic risk assessment for a reinforced concrete frame designed according to Chinese codes", Struct. Infrastruct. Eng., 10(10), 1295-1310. https://doi.org/10.1080/15732479.2013.791326.
- Mahmoudi Moazam, A., Hasani, N. and Yazdani, M. (2018), "Incremental dynamic analysis of small to medium spans plain concrete arch bridges", Eng. Fail. Analysis. 91 12-27. https://doi.org/10.1016/j.engfailanal.2018.04.027.
- Marefat, M.S., Yazdani, M. and Jafari, M. (2019), "Seismic assessment of small to medium spans plain concrete arch bridges", European J. Environ. Civil Eng., 23(7), 894-915. https://doi.org/10.1080/19648189.2017.1320589.
- Modena, C., Tecchio, G., Pellegrino, C., da Porto, F., Dona, M., Zampieri, P. and Zanini, M.A. (2015), "Reinforced concrete and masonry arch bridges in seismic areas: typical deficiencies and retrofitting strategies", Struct. Infrastruct. Eng., 11(4), 415-442. https://doi.org/10.1080/15732479.2014.951859.
- Montiel, M.A. and Ruiz, S.E. (2006), "Seismic design method for reliability-based rehabilitation of buildings", Earthq. Spectra. 22(1), 189-214. https://doi.org/10.1193%2F1.2162572. https://doi.org/10.1193%2F1.2162572
- Mosleh, A. and Varum, H. (2015), "A methodology for determining the seismic vulnerability of old concrete highway bridges by using fragility curves", J. Struct. Eng. Geo-Tech., 5(1), 1-7.
- Mosleh, A., Jara, J., Razzaghi, M.S. and Varum, H. (2018), "Probabilistic seismic performance analysis of RC bridges", J. Earthq. Eng., 1-25. https://doi.org/10.1080/13632469.2018.1477637.
- Mosleh, A., Razzaghi Mehran, S., Jara, J. and Varum, H. (2016), "Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources", Earthq. Struct., 11(3), 517-538. http://dx.doi.org/10.12989/eas.2016.11.3.517.
- Mosoarca, M., Onescu, I., Onescu, E., Azap, B., Chieffo, N. and Szitar-Sirbu, M. (2019), "Seismic vulnerability assessment for the historical areas of the Timisoara city, Romania", Eng. Fail. Analysis. 101, 86-112. https://doi.org/10.1016/j.engfailanal.2019.03.013.
- Naderi, M. and Zekavati, M. (2018), "Assessment of seismic behavior stone bridge using a finite element method and discrete element method", Earthq. Struct., 14(4), 297-303. https://doi.org/10.12989/eas.2018.14.4.297.
- Pirizadeh, M. and Shakib, H. (2019), "On a reliability-based method to improve the seismic performance of midrise steel moment resisting frame setback buildings", Int. J. Steel Struct., 19(1), 58-70. https://doi.org/10.1007/s13296-018-0086-y.
- Pourgharibshahi, A. and Taghikhany, T. (2012), "Reliability-based assessment of deteriorating steel moment resisting frames", J. Construct. Steel Res., 71, 219-230. https://doi.org/10.1016/j.jcsr.2011.07.019.
- Reitherman, R.K. (2012), "Earthquakes and engineers: an international history", American Soc. Civil Eng.
- Rezaeian, S. and Der Kiureghian, A. (2011), "Simulation of orthogonal horizontal ground motion components for specified earthquake and site characteristics", Earthq. Eng. Struct. Dyn., 41(2), 335-353. https://doi.org/10.1002/eqe.1132.
- Rossetto, T. and Elnashai, A. (2003), "Derivation of vulnerability functions for European-type RC structures based on observational data", Eng. Struct., 25(10), 1241-1263. https://doi.org/10.1016/S0141-0296(03)00060-9.
- Seo, J. and Park, H. (2017), "Probabilistic seismic restoration cost estimation for transportation infrastructure portfolios with an emphasis on curved steel I-girder bridges", Struct. Safety. 65 27-34. https://doi.org/10.1016/j.strusafe.2016.12.002.
- Siqueira, G.H., Sanda, A.S., Paultre, P. and Padgett, J.E. (2014), "Fragility curves for isolated bridges in eastern Canada using experimental results", Eng. Struct., 74, 311-324. https://doi.org/10.1016/j.engstruct.2014.04.053.
- Shome, N. (1999), Probabilistic Seismic Demand Analysis of Nonlinear Structures, Stanford University.
- Shome, N. and Cornell, C.A. (1999), Probabilistic seismic demand analysis of nonlinear structures, Report No. RMS-35, Stanford University.
- Simos, N., Manos, G.C. and Kozikopoulos, E. (2018), "Near-and far-field earthquake damage study of the Konitsa stone arch bridge", Eng. Struct., 177, 256-267. https://doi.org/10.1016/j.engstruct.2018.09.072.
- Standard, B. (2005), "Eurocode 8: Design of structures for earthquake resistance - Part 2: Bridges", 1998-1991.
- Tecchio, G., Dona, M. and da Porto, F. (2016), "Seismic fragility curves of as-built single-span masonry arch bridges", Bull. Earthq. Eng., 14(11), 3099-3124. https://doi.org/10.1007/s10518-016-9931-6.
- Tolentino, D. and Ruiz, S.E. (2015), "Time-dependent confidence factor for structures with cumulative damage", Earthq. Spectra. 31(1), 441-461. https://doi.org/10.1193%2F010912EQS008M. https://doi.org/10.1193%2F010912EQS008M
- Vamvatsikos, D. (2013), "Derivation of new SAC/FEMA performance evaluation solutions with second‐order hazard approximation", Earthq. Eng. Struct. Dyn., 42(8), 1171-1188. https://doi.org/10.1002/eqe.2265.
- Vamvatsikos, D. and Allin Cornell, C. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
- Veismoradi1a, S. and Darvishan, E. (2018), "Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions", Earthq. Struct., 15(5), 487-498. DOI. https://doi.org/10.12989/EAS.2018.15.5.487
- Venture, S.J. (2000), "Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, FEMA 350", Federal Emergency Management Agency, USA. 13.
- Yazdani, M., Jahdngiri, V. and Marefat, M.S. (2019), "Seismic performance assessment of plain concrete arch bridges under near-field earthquakes using incremental dynamic analysis", Engineering Failure Analysis. 106 104170. DOI: https://doi.org/10.1016/j.engfailanal.2019.104170.
- Yazgan, U. (2015), "Empirical seismic fragility assessment with explicit modeling of spatial ground motion variability", Eng. Struct., 100, 479-489. https://doi.org/10.1016/j.engstruct.2015.06.027.
- Zampieri, P., Tecchio, G., da Porto, F. and Modena, C. (2015), "Limit analysis of transverse seismic capacity of multi-span masonry arch bridges", Bull. Earthq. Eng., 13(5), 1557-1579. https://doi.org/10.1007/s10518-014-9664-3.
- Zampieri, P., Zanini, M.A. and Faleschini, F. (2016), "Derivation of analytical seismic fragility functions for common masonry bridge types: methodology and application to real cases", Eng. Fail. Analysis. 68, 275-291. https://doi.org/10.1016/j.engfailanal.2016.05.031.
- Zampieri, P., Zanini, M. A. and Zurlo, R. (2015), "Seismic behaviour analysis of classes of masonry arch bridges", Key Eng. Mater., 628, 136-142. https://doi.org/10.4028/www.scientific.net/KEM.628.136