DOI QR코드

DOI QR Code

Weighting Coefficient Estimation of Vegetation Health Index for Ecological Drought Analysis

생태가뭄분석을 위한 식생건강지수의 가중치 매개변수 추정

  • Won, Jeongeun (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Choi, Jeonghyeon (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Lee, Okjeong (Department of Environmental Engineering, Pukyong National University) ;
  • Seo, Jiyu (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Kim, Sangdan (Department of Environmental Engineering, Pukyong National University)
  • 원정은 (부경대학교 지구환경시스템과학부 (환경공학전공)) ;
  • 최정현 (부경대학교 지구환경시스템과학부 (환경공학전공)) ;
  • 이옥정 (부경대학교 환경공학과) ;
  • 서지유 (부경대학교 지구환경시스템과학부 (환경공학전공)) ;
  • 김상단 (부경대학교 환경공학과)
  • Received : 2020.08.31
  • Accepted : 2020.10.29
  • Published : 2020.11.30

Abstract

In this study, after estimating VCI (Vegation Condition Index), TCI (Thermal Condition Index) and VHI (Vegetation Health Index) from the NDVI (Normalized Differentiation Vegetation Index) and LST (Land Surface Temperature) remotely sensed at major sites in Korea during the 2001-1919 period, the correlation between these indices and various drought indices is analyzed for the purpose of assessing the effects of ecological drought. The relative impact of VCI and TCI on vegetation health was found to vary by region. The effects of drought on vegetation in Korea's forest areas could be more clearly identified in TCI than in VCI. It is suggested that the revised VHI, reflecting the relative influence of VCI and TCI, can better explain the effects of drought on vegetation.

본 연구에서는 2001년에서 2019년 기간 동안의 우리나라 주요 지점에서 원격으로 탐사된 정규화식생지수(Normalized Difference Vegetation Index, NDVI)와 지표면온도(Land Surface Temperature, LST)로부터 식생상태지수(Vegetation Condition Index, VCI), 열상태지수(Thermal Condition Index, TCI), 식생건강지수(Vegetation Health Index, VHI)를 추정한 후, 생태학적 가뭄의 영향을 평가할 목적으로 이들 지수들과 다양한 가뭄지수들 사이의 상관성이 분석된다. VCI와 TCI가 식생건강에 미치는 상대적 영향력은 지역에 따라 달라지는 것이 발견되었다. 우리나라 산림지역의 식생에 미치는 가뭄의 영향은 VCI보다는 TCI에서 더 분명하게 식별될 수 있었다. VCI와 TCI의 상대적인 영향력이 반영되어 추정된 VHI는 식생에 미치는 가뭄의 영향을 더 잘 설명할 수 있음이 제시된다.

Keywords

References

  1. Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C. and Tucker, C. (2006) A comparative study of NOAA-AVHRR derived drought indices using change vector analysis. Remote Sensing of Environment, 105(1), pp. 9-22. [DOI : http://doi:10.1016/j.rse.2006.06.003]
  2. Bento, V., DaCamara, C., Trigo, I., Martins, J., and Duguay-Tetzlaff, A. (2017) Improving land surface temperature retrievals over mountainous regions. Remote Sensing, 9(1), p. 38. [DOI : 10.3390/rs9010038]
  3. Bento, V., Gouveia, C., DaCamara, C. and Trigo, I. (2018) A Climatological assessment of drought impact on vegetation health index. Agricultural and Forest Meteorology, 259, pp. 286-295. [DOI : 10.1016/j.agrformet.2018.05.014]
  4. Bhuiyan, C., Singh, R. P., and Kogan, F. N. (2006) Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8(4), pp. 289-302. [DOI : 10.1016/j.jag.2006.03.002]
  5. Chen, J., Wilson, C., Tapley, B., Yang, Z. and Niu, G. (2009) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. Journal of Geophysical Research, 114, B05404. [DOI : http://doi:10.1029/2008JB006056]
  6. Cook, E. R., Seager, R., Cane, M. A., and Stahle, D. W. (2007) North American drought: Reconstructions, causes, and consequences. Earth-Science Reviews, 81(1-2), pp. 93-134. [DOI : https://doi.org/10.1016/j.earscirev.2006. 12.002]
  7. Dai, A. (2013) Increasing drought under global warming in observations and models. Nature climate change, 3(1), pp. 52-58. [DOI : https://doi.org/10.1038/nclimate1633]
  8. Detsch, F., Otte, I., Appelhans, T., Hemp, A. and Nauss, T. (2016) Seasonal and long-term vegetation dynamics from 1-km GIMMS-based NDVI time series at Mt. Kilimanjaro, Tanzania. Remote Sensing of Environment, 178, pp. 70-83. [DOI : https://doi.org/10.1016/j.rse.2016.03.007]
  9. Diffenbaugh, N. S., Swain, D. L., and Touma, D. (2015) Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences, 112(13), pp. 3931-3936. [DOI : https://doi.org/10.1073/pnas.1422385112]
  10. Ding, M., Li, L., Zhang, Y., Sun, X., Liu, L., Gao, J., Wang, Z. and Li, Y. (2015) Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Geographical Sciences, 25(2), pp. 131-148. [DOI : https://doi.org/10.1007/s11442-015-1158-y]
  11. Ding, Y., Hayes, M. and Widhalm, M. (2011) Measuring economic impacts of drought: a review and discussion. Disaster Prevention and Management, 20(4), pp. 434-446. [DOI : 10.1108/09653561111161752]
  12. Duguay-Tetzlaff, A., Bento, V., Gottsche, F., Stockli, R., Martins, J., Trigo, I., Olesen, F., Bojanowski, J., da Camara, C., Kunz, H. (2015) Meteosat land surface temperature climate data record: achievable accuracy and potential uncertainties. Remote Sensing, 7(10), pp. 13139-13156. [DOI : https://doi.org/10.3390/rs71013139]
  13. Fensholt, R., and Proud, S. R. (2012) Evaluation of earth observation based global long term vegetation trends- Comparing GIMMS and MODIS global NDVI time series. Remote sensing of Environment, 119, pp. 131-147. [DOI : https://doi.org/10.1016/j.rse.2011.12.015]
  14. Gao, B. (1996) NDWI a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), pp. 257-266. [DOI : https://doi:10.1038/264541a0]
  15. Gouveia, C., Trigo, R., Begueria, S. and Vicente-Serrano, S. (2017) Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators. Global and Planetary Change, 151, pp. 15-27. [DOI : https://doi.org/10.1016/j.gloplacha.2016.06.011]
  16. Gu, Y., Brown, J., Verdin, J. and Wardlow, B. (2007) A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34, L06407. [DOI : http://doi:10.1029/2006GL029127].
  17. Gu, Y., Hunt, E., Wardlow, B, Basara, J., Brown, J. and Verdin, J. (2008) Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35, L22401. [DOI : http://doi:10.1029/2008GL035772]
  18. Hobbins, M., Wood, A., McEvoy, D., Huntington, J., Morton, C., Anderson, M. and Hain, C. (2016) The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand. Journal of Hydrometeorology, 17(6), pp. 1745-1761. [DOI : https://doi.org/10.1175/JHM-D-15-0121.1]
  19. Jackson, T., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P. and Hunt, E. (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92(4), pp. 475-482. [DOI : http://doi:10.1016/j.rse.2003.10.021]
  20. Jain, S., Keshri, R., Goswami, A., Sarkar, A. and Chaudhry, A. (2009) Identification of drought-vulnerable areas using NOAA AVHRR data. International Journal of Remote Sensing, 30(10), pp. 2653-2668. [DOI: https://doi:10.1080/01431160802555788]
  21. Karnieli, A., Agam, N., Pinker, R., Anderson, M., Imhoff, M., Gutman, G., Panov, N., Goldberg, A., Karnieli, A., Agam, N., Pinker, R., Anderson, M., Imhoff, M., Gutman, G., Panov, N. and Goldberg, A. (2010) Use of NDVI and land surface temperature for drought assessment: merits and limitations. Journal of Climate, 23(3), pp. 618-633. [DOI : https://doi.org/10.1175/2009JCLI2900.1]
  22. Kim, E., Choi, H. I., Park, M. J., Cho, S. J., and Kim, S. (2011) The effect of climate change on Korean drought occurrences using a stochastic soil water balance model. Scientific Research and Essays, 6(13), pp. 2771-2783. [DOI : https://doi.org/10.5897/SRE11.198]
  23. Kim, S., Kim, B., Ahn, T. and Kim, H. (2011) Spatio-temporal characterization of Korean drought using severity-areaduration curve analysis, Water and Environment Journal, 25(1), pp. 22-30. [DOI : https://doi.org/10.1111/j.1747-6593.2009.00184.x]
  24. Kim, S., Ryu, J. S., Oh, K. R., and Jeong, S. M. (2012) An Application of Copulas-based Joint Drought Index for Determining Comprehensive Drought Conditions. Journal of Korean Society of Hazard Mitigation, 12(1), pp. 223-230. [Korean Literature] https://doi.org/10.9798/KOSHAM.2012.12.1.223
  25. Klos, R., Wang, G., Bauerle, W. and Rieck, J. (2009) Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest health and monitoring data. Ecological Applications, 19(3), pp. 699-708. [DOI : https://doi.org/10.1890/08-0330.1]
  26. Kogan, F. (1997) Global drought watch from space. Bulletin of the American Meteorological Society, 78(4), pp. 621-636. [DOI : https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2]
  27. Kogan, F. (2001) Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82(9), pp. 1949-1964. [DOI : https://doi.org/10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2]
  28. Kogan, F., Salazar, L. and Roytman, L. (2012) Forecasting crop production using satellite-based vegetation health indices in Kansas, USA. International Journal of Remote Sensing, 33(9), pp. 2798-2814. [DOI : https://doi.org/10. 1080/01431161.2011.621464] https://doi.org/10.1080/01431161.2011.621464
  29. Lakshmi, V. (ed.). (2016) Remote sensing of hydrological extremes. Springer Remote Sensing/Photogrammetry. Springer International Publishing.
  30. Lee, H., Nam, W., Yoon, D., Hong, E., Kim, D., Svoboda, M., Tadesse, T. and Wardlow, B. (2019) Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea. Journal of the Korean Society of Agricultural Engineers, 61(3), pp. 1-14. [Korean Literature] https://doi.org/10.5389/KSAE.2019.61.3.001
  31. Lee, H., Nam, W., Yoon, D., Hong, E., Kim, T., Park, J., and Kim, D. (2020) Percentile Approach of Drought Severity Classification in Evaporative Stress Index for South Korea. Journal of the Korean Society of Agricultural Engineers, 62(2), pp. 63-73. [Korean Literature] https://doi.org/10.5389/KSAE.2020.62.2.063
  32. Martins, J., Trigo, I. F., Bento, V. A., and Da Camara, C. (2016) A Physically constrained calibration database for land surface temperature using infrared retrieval algorithms. Remote Sensing, 8(10), p. 808. [DOI : https://doi.org/10.3390/rs8100808]
  33. McKee, T., Doesken, N. and Kleist, J. (1993) The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, California, 17-22 January 1993, pp. 179-183.
  34. McVicar, T. and Jupp, D. (1998) The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: A review. Agricultural Systems, 57(3), pp. 399-468, [DOI : https://doi:10.1016/S0308-521X(98)00026-2]
  35. Mishra, A. K., and Singh, V. P. (2010) A review of drought concepts. Journal of hydrology, 391(1-2), pp. 202-216. [DOI : https://doi.org/10.1016/j.jhydrol.2010.07.012]
  36. Mun, Y., Nam, W., Jeon, M., Kim, T., Hong, E., Hayes, M., and Tadesse, T. (2019) Application of meteorological drought index using Climate Hazards Group InfraRed Precipitation wigh Station (CHIRPS) based on global satellite-assisted precipitation products in Korea. Journal of the Korean Society of Agriculture Engineers, 61(2), pp. 1-11. [Korean Literature]
  37. Otkin, J., Anderson, M., Hain, C., and Svoboda, M. (2014) Examining the relationship between drought development and rapid changes in the evaporative stress index. Journal of Hydrometeorology, 15, pp. 938-956. [DOI : https://doi.org/10.1175/JHM-D-13-0110.1]
  38. Otkin, J., Anderson, M., Hain, C., Mladenova, I., Basara, J., and Svoboda, M. (2013) Examining rapid onset drought development using thermal infrared-based evaporative stress index. Journal of Hydrometeorology, 14, pp. 1057-1074.[DOI : https://doi.org/10.1175/JHM-D-12-0144.1]
  39. Park, M., Sim, H., Park, Y. and Kim, S. (2015) Drought Severity-Duration-Frequency Analysis based on KMA 1-km Resolution RCP Scenario. Journal of Korean Society of Hazard Mitigation, 15(3), pp. 347-355. [Korean Literature] [DOI : http://dx.doi.org/10.9798/KOSHAM.2015.15.3.347]
  40. Phillips, O., Aragao, L., Lewis, S., Fisher, J., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T.R., Banki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., de Oliveira, A., Cardozo, N., Czimczik, C., Feldpausch, T., Freitas, M., Gloor, E., Higuchi, N., Jimenez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D., Nepstad, D., Patino, S., Penuela, M., Prieto, A., Ramirez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A., ter Steege, H., Stropp, J., Vasquez, R., Zelazowski, P., Davila, E., Andelman, S., Andrade, A., Chao, K., Erwin, T., Di Fiore, A., Honorio, E., Keeling, H., Killeen, T., Laurance, W., Cruz, A., Pitman, N., Vargas, P., Ramirez-Angulo, H., Rudas, A., Salamao, R., Silva, N., Terborgh, J. and Torres-Lezama, A. (2009) Drought sensitivity of the Amazon Rainforest. Science, 323(5919), pp. 1344-1347. [DOI : 10.1126/science.1164033]
  41. Quiring, S. and Ganesh, S. (2010) Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agricultural and Forest Meteorology, 150(3), pp. 330-339. [DOI : https://doi.org/10.1016/j.agrformet.2009.11.015]
  42. Ryu, J., Ahn, J. and Kim, S. (2012) An application of drought severity-area-duration curves using copulas-based joint drought index. Journal of Korea Water Resources Association, 45(10), pp. 1043-1050. [Korean Literature] [DOI : 10.3741/JKWRA.2012.45.10.1043]
  43. Seiler, R., Kogan, F. and Sullivan, J. (1998) AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Advances in Space Research, 21(3), pp. 481-484. [DOI : https://doi.org/10.1016/S0273-1177(97)00884-3]
  44. Sim, H. J., Ryu, J. S., Ahn, J., Kim, J., and Kim, S. (2013) Real-time drought index for determining drought conditions in natural water supply system communities. Journal of the Korean Society of Hazard Mitigation, 13(5), pp. 365-374. [Korean Literature] [DOI : http://dx.doi.org/10.9798/KOSHAM.2013.13.5.365]
  45. Singh, R., Roy, S. and Kogan, F. (2003) Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. International Journal of Remote Sensing, 24(22), pp. 4393-4402. [DOI : https://doi.org/10.1080/0143116031000084323]
  46. Sun, D. and Kafatos, M. (2007) Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters, 34(24), L24406. [DOI : https://doi.org/10.1029/2007GL031485]
  47. Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., and Sheffield, J. (2014) Global warming and changes in drought. Nature Climate Change, 4(1), pp. 17-22. [DOI : https://doi.org/10.1038/nclimate2067]
  48. Tucker, C., Pinzon, J., Brown, M., Slayback, D., Pak, E., Mahoney, R., Vermote, E. and El Saleous, N. (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), pp. 4485-4498. [DOI : https://doi.org/10.1080/01431160500168686]
  49. Unganai, L. and Kogan, F. (1998) Drought monitoring and corn yield estimation in southern Africa from AVHRR data. Remote Sensing of Environment, 63(3), pp. 219-232. [DOI : https://doi.org/10.1016/S0034-4257(97)00132-6]
  50. Vicente-Serrano, S. M., Cabello, D., Tomas-Burguera, M., Martin-Hernandez, N., Begueria, S., Azorin-Molina, C., and Kenawy, A. E. (2015) Drought variability and land degradation in semiarid regions: Assessment using remote sensing data and drought indices (1982-2011). Remote Sensing, 7(4), pp. 4391-4423. [DOI : https://doi.org/10.3390/rs70404391]
  51. Vicente-Serrano, S., Lopez-Moreno, J., Begueria, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., Garcia-Ruiz, J., Azorin-Molina, C., Moran-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F. and Espejo, F. (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9(4), 044001. [DOI : 10.1088/1748-9326/9/4/044001]
  52. Wang, L. and Qu, J. (2009) Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3(2), pp. 237-247. [DOI : https://doi.org/10.1007/s11707-009-0023-7]
  53. Wang, L., and Qu, J. (2007) NMDI: A Normalized Multi-band Drought Index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34, L20405. [DOI : http://doi:10.1029/2007GL031021]
  54. Wang, L., Qu, J., Hao, X. and Zhu, Q. (2008) Sensitivity studies of the moisture effects on MODIS SWIR reflectance and vegetation water indices. International Journal of Remote Sensing, 29(24), pp. 7065-7075. [DOI : https://doi.org/10.1080/01431160802226034]
  55. Wardlow, B. D., Anderson, M. C., and Verdin, J. P. (eds.). (2012) Remote sensing of drought: Innovative monitoring approaches. drought and water Crises. CRC Press.
  56. Wilhite, D., Svoboda, M. and Hayes, M. (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resources Management, 21(5), pp. 763-774. [DOI : https://doi.org/10.1007/s11269-006-9076-5]
  57. Won, J., Choi, C., Lee, O. and Kim, S. (2020) Copula-based Joint Drought Index using SPI and EDDI and its application to climate change, Science of the Total Environment, 744, 140701. [DOI : https://doi.org/10.1016/j.scitotenv.2020.140701]
  58. Won, J., Jang, S., Kim, K. and Kim, S. (2018) Applicability of the evaporative demand drought index. Journal of Korean Society of Hazard Mitigation, 18(6), pp. 431-442. [Korean Literature] [DOI : https://doi.org/10.9798/KOSHAM.2018.18.6.431]
  59. Yao, N., Li, Y., Lei, T. and Peng, L. (2018) Drought evolution, severity and trends in mainland China over 1961-2013. Science of the Total Environment, 616, pp. 73-89. [DOI : https://doi.org/10.1016/j.scitotenv.2017.10.327]
  60. Yoon, D., Nam, W., Lee, H., Hong, E., and Kim, T. (2020a) Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis. Journal of the Korean Society of Agricultural Engineers, 62(3), pp. 51-61. [Korean Literature] https://doi.org/10.5389/KSAE.2020.62.3.051
  61. Yoon, D., Nam, W., Lee, H., Hong, E., Kim, T., Kim, D., Shin, A., and Svoboda, M. (2018a) Application of Evaporative Stress Index (ESI) for Satellite-based Agricultural Drought Monitoring in South Korea. Journal of the Korean Society of Agricultural Engineers, 60(6), pp. 121-131. [Korean Literature] https://doi.org/10.5389/KSAE.2018.60.6.121
  62. Yoon, D., Nam, W., Lee, H., Hong, E., Song, F., Wardlow, B., Tadesse, T., Svoboda, M., Hayes, M. and Kim, D. (2020b) Agricultural drought assessment in East Asia using satellite-based indices. Remote Sensing, 12(3), pp. 1-16. [DOI : https://doi.org/10.3390/rs12030444]
  63. Yoon, Y., Kim, N., Lee, S., Park, S., Son, E., Jang, J., and Lee, Y. (2018b) Inter-comparisons of Satellite-based Drought Indices on the Cropland in Korea, 2001-2017. Journal of Climate Research, 13(4), pp. 275-296. [DOI : http://dx.doi.org/10.14383/cri.2018.13.4.275]