DOI QR코드

DOI QR Code

Estimation of lateral pile resistance incorporating soil arching in pile-stabilized slopes

  • Neeraj, C.R. (Department of Civil Engineering, Indian Institute of Technology Palakkad) ;
  • Thiyyakkandi, Sudheesh (Department of Civil Engineering, Indian Institute of Technology Palakkad)
  • Received : 2020.07.24
  • Accepted : 2020.11.28
  • Published : 2020.12.10

Abstract

Piles installed in row(s) are used as an effective technique to improve the stability of soil slopes. The analysis of pile-stabilized slopes require a reliable prediction of lateral resistance offered by the piles. In this work, an analytical solution is developed to estimate the lateral resistance offered by the stabilizing piles in sand and c - 𝜙 soil slopes considering soil arching phenomenon. The soil arching in both horizontal direction (between the neighboring piles) and vertical direction (in the active wedge in front of the pile row) are studied and their effects are incorporated in the proposed model. The shape of soil arch is assumed to be circular and principal stress trajectories are defined separately for both modes of arching. Experimental and numerical studies found in literature were used to validate the proposed method. A detailed parametric analysis was performed to study the influence of pile diameter, center-to-center spacing, slope angle and angle of internal friction on the lateral pile resistance.

Keywords

Acknowledgement

The financial support provided to the first author by the Ministry of Education (MoE), India, for completion of this work is gratefully acknowledged.

References

  1. Adachi, T., Kimura, M. and Tada, S. (1989), "Analysis on the preventive mechanism of landslide stabilizing piles", Proceedings of the 3rd International Symposium on Numerical Models in Geomechanics, Niagara Falls, Canada, May.
  2. Ardalan, H. and Mohamed, A. (2013), "Analysis of landslides and slopes stabilized using one row of piles", Research Report No: ATP 4/13/12, Deep Foundation Institute (DFI) and University of Alabama, Huntsville, Alabama, U.S.A.
  3. Ashour, M. and Hamed, A. (2012), "Analysis of pile stabilized slopes based on soil-pile interaction", Comput. Geotech., 39, 85-97. https://doi.org/10.1016/j.compgeo.2011.09.001.
  4. Ausilio, E., Conte, E. and Dente, G. (2001), "Stability analysis of slopes reinforced with piles", Comput. Geotech., 28(8), 591-611. https://doi.org/10.1016/S0266-352X(01)00013-1.
  5. Bosscher, P.J. and Gray, D.H. (1986), "Soil arching in sandy slopes", J. Geotech. Eng., 112(6), 626-645. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:6(626).
  6. Broms, B.B. (1964), "Lateral resistance of piles in cohesive soils", J. Soil Mech. Found. Div., 90(2), 27-63. https://doi.org/10.1061/JSFEAQ.0000611
  7. Cai, F. and Keizo, U. (2000), "Numerical analysis of the stability of a slope reinforced with piles", Soils Found., 40(1), 73-84. https://doi.org/10.3208/sandf.40.73.
  8. Chen, C. and Martin, G.R. (2002), "Soil-structure interaction for landslide stabilizing piles", Comput. Geotech., 29(5), 363-386. https://doi.org/10.1016/S0266-352X(01)00035-0.
  9. De Beer, E.E. and Wallays, M. (1970), "Stabilization of a slope in schists by means of bored piles reinforced with steel beams", Proceedings of the International Society of Rock Mechanics, Lisbon, Portugal, May.
  10. Deng, B. and Yang, M. (2019), "Bearing capacity analysis of pilestabilized slopes under steady unsaturated flow conditions", Int. J. Geomech., 19(12), 04019129. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001509.
  11. Di Laora, R., Maiorano, M.S. and Aversa, S. (2017), "Ultimate lateral load of slope-stabilizing piles", Geotechnique Lett., 7(3), 237-244. https://doi.org/10.1680/jgele.17.00038.
  12. Durrani, I.K., Ellis, E.A. and Reddish, D.J. (2006), "Modelling lateral pile-soil interaction for a row of piles in a frictional soil", Proceedings of the 4th International FLAC Symposium on Numerical Modelling in Geomechanics, Madrid, Spain, May.
  13. Ellis, E., Durrani, I.K. and Reddish, D.J. (2010), "Numerical modelling of discrete pile rows for slope stability and generic guidance for design", Geotechnique, 60(3), 185-195. https://doi.org/10.1680/geot.7.00090.
  14. Galli, A. and Di Prisco, C. (2013), "Displacement-based design procedure for slope-stabilizing piles", Can. Geotech. J., 50(1), 41-53. https://doi.org/10.1139/cgj-2012-0104.
  15. Handy, R.L. (1985), "The arch in soil arching", J. Geotech. Eng., 111(3), 302-318. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(302).
  16. Harrop-Williams, K. (1989), "Arch in soil arching", J. Geotech. Eng., 115(3), 415-419. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:3(415).
  17. Hassiotis, S., Chameau, J. and Gunaratne, M. (1997), "Design method for stabilization of slopes with piles", J. Geotech. Geoenviron. Eng., 123(4), 314-323. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(314).
  18. He, Y., Hazarika, H., Yasufuku, N., Teng, J., Jiang, Z. and Han, Z. (2015b), "Estimation of lateral force acting on piles to stabilize landslides", Nat. Hazards, 79(3), 1981-2003. https://doi.org/10.1007/s11069-015-1942-0.
  19. He, Y., Hemanta, H., Noriyuki, Y. and Zheng, H. (2015a), "Evaluating the effect of slope angle on the distribution of the soil-pile pressure acting on stabilizing piles in sandy slopes", Comput. Geotech., 69, 153-165. http://doi.org/10.1016/j.compgeo.2015.05.006.
  20. Hewlett, W.J. and Randolph, M.F. (1988), "Analysis of piled embankments", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25(6), 297-298.
  21. Ho, I.H. (2015), "Numerical study of slope-stabilizing piles in undrained clayey slopes with a weak thin layer", Int. J. Geomech., 15(5), 06014025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000445.
  22. Ito, T. and Matsui, T. (1975), "Methods to estimate lateral force acting on stabilizing piles", Soils Found., 15(4), 43-59. https://doi.org/10.3208/sandf1972.15.443.
  23. Ito, T., Matsui, T. and Hong, W.P. (1981), "Design method for stabilizing piles against landslide: One row of piles", Soils Found., 21(1), 21-37. https://doi.org/10.3208/sandf1972.21.21.
  24. Jaouhar, E.M., Li, L. and Aubertin, M. (2018), "An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution", Geomech. Eng., 15(3), 889-898. https://doi.org/10.12989/gae.2018.15.3.889.
  25. Jeong, S., Kim, B., Won, J. and Lee, J. (2003), "Uncoupled analysis of stabilizing piles in weathered slopes", Comput. Geotech., 30(8), 671-682. https://doi.org/10.1016/j.compgeo.2003.07.002.
  26. Kellogg, C. and Quinlan, J. (1987), "The arch in soil arching. discussion", J. Geotech. Eng., 113(3), 269-271. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(269).
  27. Khosravi, M., Bahaaddini, M., Kargar, A. and Pipatpongsa, T. (2018), "Soil arching behind retaining walls under active translation mode: Review and new insights", Int. J. Min. GeoEng., 52(2), 131-140. https://doi.org/10.22059/ijmge.2018.264011.594754.
  28. Kourkoulis, R., Gelagoti, F., Anastasopoulos, I. and Gazetas, G. (2011a), "Hybrid method for analysis and design of slope stabilizing piles", J. Geotech. Geoenviron. Eng., 138(1), 1-14. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000546.
  29. Kourkoulis, R., Gelagoti, F., Anastasopoulos, I. and Gazetas, G. (2011b), "Slope stabilizing piles and pile-groups: parametric study and design insights", J. Geotech. Geoenviron. Eng., 137(7), 663-677. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000479.
  30. Lee, C., Hull, T. and Poulos, H. (1995), "Simplified pile-slope stability analysis", Comput. Geotech., 17(1), 1-16. https://doi.org/10.1016/0266-352X(95)91300-S.
  31. Lee, I.M., Kim, D.H., Kim, K.Y. and Lee, S.W. (2016), "Earth pressure on a vertical shaft considering the arching effect in �� -�� soil", Geomech. Eng., 11(6), 879-896. https://doi.org/10.12989/gae.2016.11.6.879.
  32. Li, J.P. and Wang, M. (2014), "Simplified method for calculating active earth pressure on rigid retaining walls considering the arching effect under translational mode", Int. J. Geomech., 14(2), 282-290. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000313.
  33. Li, X. and Wei, S. (2018), "A calculation method for the distribution of lateral force acting on stabilizing piles considering soil arching effect", Indian Geotech. J., 49(1), 132-139. https://doi.org/10.1007/s40098-018-0307-5.
  34. Liang, R. and Zeng, S. (2002), "Numerical study of soil arching mechanism in drilled shafts for slope stabilization", Soils Found., 42(2), 83-92. https://doi.org/10.3208/sandf.42.2_3.
  35. Liang, R.Y., Joorabchi, A.E. and Li, L. (2014), "Analysis and design method for slope stabilization using a row of drilled shafts", J. Geotech. Geoenviron. Eng., 140(5), 04014001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001070.
  36. Lirer, S. (2012), "Landslide stabilizing piles: Experimental evidences and numerical interpretation", Eng. Geol., 149-150, 70-77. https://doi.org/10.1016/j.enggeo.2012.08.002.
  37. Moradi, G. and Abbasnejad, A. (2015), "Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb", Geomech. Eng., 8(6), 829-844. http://doi.org/10.12989/gae.2015.8.6.829.
  38. Norris, G. (1986), "Theoretically based BEF laterally loaded pile analysis", Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Nantes, France, May.
  39. Paik, K. and Salgado, R. (2003), "Estimation of active earth pressure against rigid retaining walls considering arching effects", Geotechnique, 53(7), 643-654. https://doi.org/10.1680/geot.2003.53.7.643.
  40. Poulos, H.G. (1995), "Design of reinforcing piles to increase slope stability", Can. Geotech. J., 32(5), 808-818. https://doi.org/10.1139/t95-078.
  41. Rao, P., Chen, Q., Zhou, Y., Nimbalkar, S. and Chiaro, G. (2016), "Determination of active earth pressure on rigid retaining wall considering arching effect in cohesive backfill soil", Int. J. Geomech., 16(3), 04015082. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000589.
  42. Saseendran, R. and Dodagoudar, G. (2020), "Reliability analysis of slopes stabilised with piles using response surface method", Geomech. Eng., 21(6), 513-525. http://doi.org/10.12989/gae.2020.21.6.513.
  43. Smethurst, J. and Powrie, W. (2007), "Monitoring and analysis of the bending behavior of discrete piles used to stabilise a railway embankment", Geotechnique, 57(8), 663-677. https://doi.org/10.1680/geot.2007.57.8.663.
  44. Song, Y.S., Hong, W.P. and Woo, K.S. (2012), "Behavior and analysis of stabilizing piles installed in a cut slope during heavy rainfall", Eng. Geol., 129-130, 56-67. https://doi.org/10.1016/j.enggeo.2012.01.012.
  45. Viggiani, C. (1981), "Ultimate lateral load on piles used to stabilize landslides", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, June.
  46. Wang, L., Leshchinsky, B., Evans, T.M. and Xie, Y. (2017), "Active and passive arching stresses in �� - �� soils: A sensitivity study using computational limit analysis", Comput. Geotech., 84, 47-57. https://doi.org/10.1016/j.compgeo.2016.11.016.
  47. Won, J., You, K., Jeong, S. and Kim, S. (2005), "Coupled effects in stability analysis of pile-slope systems", Comput. Geotech., 32(4), 304-315. https://doi.org/10.1016/j.compgeo.2005.02.006.

Cited by

  1. Factor of safety of pile-stabilised slopes: an algorithm incorporating soil-arching effect vol.8, pp.4, 2021, https://doi.org/10.1680/jgere.21.00013