Acknowledgement
Much of the work presented in this paper was supported by the National Natural Science Foundation of China (grant numbers 51379112, 51422904, 41877239 and 41772298), and the State Key Development Program for Basic Research of China (grant number 2013CB036002), and Fundamental Research Funds for the Central Universities (grant number 2018JC044), and Natural Science Foundation of Shandong Province (grant number JQ201513). The authors would like to express appreciation to the reviewers for their valuable comments and suggestions that helped improve the quality of our paper.
References
- Aalianvari, A., Katibeh, H. and Sharifzadeh, M. (2012), "Application of fuzzy Delphi AHP method for the estimation and classification of Ghomrud tunnel from groundwater flow hazard", Arab. J. Geosci., 5(2), 275-284. https://doi.org/10.1007/s12517-010-0172-8.
- Aliabadian, Z., Sharafisafa, M., Nazemi, M., Nazemi, M. and Khamene, A.R. (2015), "Numerical analyses of tunnel collapse and slope stability assessment under different filling material loadings: A case study", Arab. J. Geosci., 8(3), 1229-1242. https://doi.org/10.1007/s12517-014-1286-1.
- Aliyu, M.M., Shang, J.L., Lawrence, J.A., Murphy, W., Collier, R., Kong, F.M. and Zhao, Z.Y. (2019), "Assessing the uniaxial compressive strength of extremely hard cryptocrystalline flint", Int. J. Rock Mech. Min. Sci., 113, 310-321. https://doi.org/10.1016/j.ijrmms.2018.12.002.
- Bakun-Mazor, D., Hatzor Y.H. and Dershowitz, W.S. (2009), "Modeling mechanical layering effects on stability of underground openings in jointed sedimentary rocks", Int. J. Rock Mech. Min. Sci., 46, 262-271. https://doi.org/10.1016/j.ijrmms.2008.04.001.
- Benardos, A.G. and Kaliampakos, D.C. (2004), "A methodology for assessing geotechnical hazards for TBM tunnelling-illustrated by the Athens Metro, Greece", Int. J. Rock Mech. Min. Sci., 41(6), 987-999. https://doi.org/10.1016/j.ijrmms.2004.03.007.
- Chenari, R.J., Fatahi, B., Ghorbani, A. and Alamoti, M.N. (2018), "Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash", Geomech. Eng., 14(6), 533-544. https://doi.org/10.12989/gae.2018.14.6.533.
- Choi, S.S., Kim, J.K., Han, B.H. and Lee, M.I. (2004), "Threedimensional analysis of fractured zones ahead of tunnel face using seismic reflection", Tunn. Undergr. Sp. Tech., 19(4-5), 533. https://doi.org/10.1016/j.tust.2004.02.124.
- Constantin, M., Bednarik, M. Jurchescu, M.C. and Vlaicu, M. (2011), "Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania)", Environ. Earth Sci., 63(2), 397-406. https://doi.org/10.1007/s12665-010-0724-y.
- Cui, Z.D., Liu, D.A. and Wu, F.Q. (2014), "Influence of dip directions on the main deformation region of layered rock around tunnels", B. Eng. Geol. Environ., 73(2), 441-450. https://doi.org/10.1007/s10064-013-0511-6.
- Daraei, A. and Zare, S. (2018), "A new strain-based criterion for evaluating tunnel stability", Geomech. Eng., 16(2), 205-215. https://doi.org/10.12989/gae.2018.16.2.205.
- Delgado, A. and Romero, I. (2016), "Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru", Environ. Modell. Softw., 77, 108-121. https://doi.org/10.1016/j.envsoft.2015.12.011.
- Fall, M., Azzam, R. and Noubactep, C. (2006), "A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping", Eng. Geol., 82(4), 241-263. https://doi.org/10.1016/j.enggeo.2005.11.007.
- Felicisimo, A.M., Cuartero, A., Remondo, J. and Quiros, E. (2013), "Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: A comparative study", Landslides, 10(2), 175-189. https://doi.org/10.1007/s10346-012-0320-1.
- Fraldi, M. and Guarracino, F. (2011), "Evaluation of impending collapse in circular tunnels by analytical and numerical approaches", Tunn. Undergr. Sp. Tech., 26(4), 507-516. https://doi.org/10.1016/j.tust.2011.03.003.
- Ghasemi, E., Yagiz, S. and Ataei, M. (2014), "Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic", B. Eng. Geol. Environ., 73(1), 23-35. https://doi.org/10.1007/s10064-013-0497-0.
- Hasanpour, R. (2014), "Advance numerical simulation of tunneling by using a double shield TBM", Comput. Geotech., 57, 37-52. https://doi.org/10.1016/j.compgeo.2014.01.002.
- Huang, F. and Yang, X.L. (2011), "Upper bound limit analysis of collapse shape for circular tunnel subjected to pore pressure based on the Hoek-Brown failure criterion", Tunn. Undergr. Sp. Tech., 26(5), 614-618. https://doi.org/10.1016/j.tust.2011.04.002.
- Huang, F., Zhu, H., Xu, Q., Cai, Y. and Zhuang, X. (2013), "The effect of weak interlayer on the failure pattern of rock mass around tunnel-Scaled model tests and numerical analysis", Tunn. Undergr. Sp. Tech., 35, 207-218. https://doi.org/10.1016/j.tust.2012.06.014.
- Hyun, K.C., Min, S., Choi, H., Park, J. and Lee, I.M. (2015), "Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels", Tunn. Undergr. Sp. Tech., 49, 121-129. https://doi.org/10.1016/j.tust.2015.04.007.
- Jetschny, S., Bohlen, T. and Kurzmann, A. (2011), "Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves", Geophys Prospect., 59(5), 934-946. https://doi.org/doi.org/10.1111/j.1365-2478.2011.00958.x.
- Kim, D.I., Yoo, W.S., Cho, H. and Kang, K.I. (2014), "A fuzzy AHP-based decision support model for quantifying failure risk of excavation work", KSCE J. Civ. Eng., 18(7), 1966-1976. https://doi.org/10.1007/s12205-014-0538-7.
- Li, P.F., Zhao, Y. and Zhou, X.J. (2016), "Displacement characteristics of high-speed railway tunnel construction in loess ground by using multi-step excavation method", Tunn. Undergr. Sp. Tech., 51, 41-55. https://doi.org/10.1016/j.tust.2015.10.009.
- Li, X., Xue, Y.G., Qiu, D.H., Ma, X.M., Qu, C., Zhou, B.H. and Kong, F.M. (2019), "Application of data mining to lagging deformation prediction of the underwater shield tunnel", Mar. Georesour. Geotec., 1-13. https://doi.org/10.1080/1064119X.2019.1681039.
- Liu, B., Zhang, F.K., Li, S.C., Li, Y., Xu, S., Nie, L.C., Zhang, C.M. and Zhang, Q.S. (2018), "Forward modelling and imaging of ground-penetrating radar in tunnel ahead geological prospecting", Geophys. Prospect., 66(4), 784-797. https://doi.org/10.1111/1365-2478.12613.
- Lombardi, M., Cardarilli, M. and Raspa, G. (2017), "Spatial variability analysis of soil strength to slope stability assessment", Geomech. Eng., 12(3), 483-503. https://doi.org/10.12989/gae.2017.12.3.483.
- Ma, X.D. and Zoback, M.D. (2017), "Lithology-controlled stress variations and pad-scale faults: A case study of hydraulic fracturing in the Woodford Shale, OklahomaWoodford Shale case study", Geophysics, 82(6), ID35-ID44. https://doi.org/10.1190/GEO2017-0044.1.
- Ma, X.D. and Zoback, M.D. (2018), "Static and dynamic response of Bakken cores to cyclic hydrostatic loading", Rock Mech. Rock Eng., 51(6), 1943-1953. http://doi.org/10.1007/s00603018-1443-z.
- Mahdevari, S., Haghighat, H.S. and Torabi, S.R. (2013), "A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation", Tunn. Undergr. Sp. Tech., 38, 59-68. https://doi.org/10.1016/j.tust.2013.05.002.
- Shahriar, A., Modirzadeh, M., Sadiq, R. and Tesfamariam, S. (2012), "Seismic induced damageability evaluation of steel buildings: A Fuzzy-TOPSIS method", Earthq. Struct., 3(5), 695-717. https://doi.org/10.12989/eas.2012.3.5.695.
- Shang, J.L., Hencher, S.R., West, L.J. and Handley, K. (2017), "Forensic excavation of rock masses: A technique to quantify discontinuity persistence", Rock Mech. Rock Eng., 50(11), 2911-2928. https://doi.org/10.1007/s00603-017-1290-3.
- Shrestha, P.K. and Panthi, K.K. (2014), "Groundwater effect on faulted rock mass: an evaluation of Modi Khola pressure tunnel in the Nepal Himalaya", Rock Mech. Rock Eng., 47(3), 1021-1035. https://doi.org/10.1007/s00603-013-0467-7.
- Shang, J.L., Zhao, Z.Y. and Ma, S. (2018), "On the shear failure of incipient rock discontinuities under CNL and CNS boundary conditions: Insights from DEM modelling", Eng. Geol., 234, 153-166. https://doi.org/10.1016/j.enggeo.2018.01.012.
- Wang, D., Jiang, Y.J., Sun, X.M., Luan, H.J. and Zhang, H. (2019), "Nonlinear large deformation mechanism and stability control of deep soft rock roadway: A case study in China", Sustainability., 11(22), 6243. https://doi.org/10.3390/su11226243.
- Wilson, D.W., Abbo, A.J., Sloan, S.W., and Lyamin, A.V. (2013), "Undrained stability of a square tunnel where the shear strength increases linearly with depth", Comput. Geotech., 49, 314-325. https://doi.org/10.1016/j.compgeo.2012.09.005.
- Yang, X.L. and Huang, F. (2011), "Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion", Tunn. Undergr. Sp. Tech., 26(6), 686-691. https://doi.org/10.1016/j.tust.2011.05.008.
- Yazdani-Chamzini, A. (2014), "Proposing a new methodology based on fuzzy logic for tunnelling risk assessment", J. Civ. Eng. Manage., 20(1), 82-94. https://doi.org/10.3846/13923730.2013.843583.
- Yoo, C. (2016), "Effect of spatial characteristics of a weak zone on tunnel deformation behavior". Geomech. Eng., 11(1), 41-58. https://doi.org/10.12989/gae.2016.11.1.041.
- Zhang, G.H., Jiao, Y.Y., Chen, L.B., Wang, H. and Li, S.C. (2015), "Analytical model for assessing collapse risk during mountain tunnel construction", Can. Geotech. J., 53(2), 326-342. https://doi.org/10.1139/cgj-2015-0064.
Cited by
- Integration of Interpretive Structural Modeling with Fuzzy Bayesian Network for Risk Assessment of Tunnel Collapse vol.2021, 2020, https://doi.org/10.1155/2021/7518284