참고문헌
- Alam, N., Nadjai, A., Ali, F. and Nadjai, W. (2018), "Structural response of unprotected and protected slim floors in fire", J. Constr. Steel Res., 142, 44-54. https://doi.org/10.1016/j.jcsr.2017.12.009.
- Ansys®. (2013), Ansys meshing user's guide (Ansys Release 15.0). Canonsburg, PA, USA: Ansys Inc.
- Atacelik. ADP92050 Tam Kesit Ozellikleri (ADP92050 Full Section Properties) [Online]. Available: http://atacelik.net/PDF/P1_ATAPANEL.pdf [Accessed].
- Both, I., Wald, F. and Zaharia, R. (2016), "Benchmark for numerical analysis of steel and composite floors exposed to fire using a general purpose FEM code", J. Appl. Eng. Sci., 14, 275-284. https://doi.org/10.5937/jaes14-8664.
- CEN. (2005a), EN 1993-1-2: Eurocode 3. Design of Steel Structures. Part 1.2: General Rules - Structural fire design. BSI: London.
- CEN. (2005b), EN 1994-1-2:2005, Eurocode 4: Design of Composite Steel and Concrete Structures - Part 1-2: General Rules - Structural Fire Design. Part 1-2: General Rules - Structural Fire Design. BSI: London.
- CEN. (2013), EN 13381-8:2013 Test methods for determining the contribution to the fire resistance of structural members. Part 8: Applied reactive protection to steel members. BSI: London.
- Cirpici, B.K., Orhan, S.N. and Kotan, T. (2019a), "Numerical modelling of heat transfer through protected composite structural members", International Civil Engineering and Architecture Conference 2019 (ICEARC 2019), Trabzon-Turkey.
- Cirpici, B.K., Orhan, S.N. and Kotan, T. (2019b), "Numerical modelling of heat transfer through protected composite structural members", Challenge J. Struct. Mech., 5(3), 96-107. https://doi.org/10.20528/cjsmec.2019.03.003.
- Cirpici, B.K., Orhan, S.N. and Kotan, T. (2019c), "Thermal performance of protected composite slab-beam systems exposed to fire", Proceedings of the 3rd International Conference on Advanced Engineering Technologies, Bayburt-Turkey.
- Cirpici, B.K., Wang, Y.C. and Rogers, B. (2016a), "Assessment of the thermal conductivity of intumescent coatings in fire", Fire Saf. J., 81, 74-84. http://dx.doi.org/10.1016/j.firesaf.2016.01.011.
- Cirpici, B.K., Wang, Y.C., Rogers, B.D. and Bourbigot, S. (2016b), "A theoretical model for quantifying expansion of intumescent coating under different heating conditions", Polymer Eng. Sci., 56(7), 798-809. https://doi.org/10.1002/pen.24308.
- Du, C., Liu, G., Qiao, G., Ma, S. and Cai, W. (2018), "Transient thermal analysis of standard planetary roller screw mechanism based on finite element method", Adv. Mech. Eng., 10(12), 1687814018812305. 10.1177/1687814018812305.
- Horacek, H. (2009), "Reactions of stoichiometric intumescent paints", J. Appl. Polymer Sci., 113, 1745-1756. https://doi.org/10.1002/app.29940.
- Institute, T.S.C. (2008), Slimflor Compendium, Report to Corus CSD. Version 01 ed.
- (ISO), I. O. f. S. (2014), ISO 834-11:2014 Fire resistance tests - Elements of building construction - Part 11: Specific requirements for the assessment of fire protection to structural steel elements.
- Jiang, J., Main, J.A., Weigand, J.M. and Sadek, F.H. (2018), "Thermal performance of composite slabs with profiled steel decking exposed to fire effects", Fire Saf. J., 95, 25-41. https://doi.org/10.1016/j.firesaf.2017.10.003.
- Khorasani, N.E., Gernay, T. and Fang, C. (2019), "Parametric study for performance-based fire design of US prototype composite floor systems", J. Struct. Eng., 145(5), 04019030. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002315.
- Lakshmikandhan, K.N., Sivakumar, P., Ravichandran, R. and Jayachandran, S.A. (2013), "Investigations on efficiently interfaced steel concrete composite deck slabs", J. Struct., 2013, 628759. 10.1155/2013/628759.
- Li, G.Q. and Wang, W.Y. (2013), "A simplified approach for fire-resistance design of steel-concrete composite beams", Steel Compos. Struct., 14(3), 295-312. https://doi.org/10.12989/scs.2013.14.3.295.
- Lim, L. and Wade, C. (2002), Experimental Fire Tests of Two-Way Concrete Slabs. In: Limited, B. (ed.) Fire Engineering Research Report 02/12. Porirua City, New Zealand: University of Canterbury.
- Mahachi, J. (1994), "Response of composite bond-deck slabs to fatigue load", Proceedings of the 5th International Conference on Steel Structures, Jakarta, Indonesia.
- Mahachi, J. (1995), "A comparison of two decking profiles subjected to fatigue load", Proceedings of the RILEM International Conference on Dynamic Behaviour of Concrete Structures, Bratislava, Slovakia, 210-211.
- Mahachi, J. and Dundu, M. (2012), "Prediction of the debonding/slip load of composite deck slabs using fracture mechanics", J. South African Inst. Civil Eng., 54, 112-116.
- Maraveas, C., Swailes, T. and Wang, Y. (2012), "A detailed methodology for the finite element analysis of asymmetric slim floor beams in fire", Steel Constr., 5(3), 191-198. 10.1002/stco.201210024
- Mariappan, T. (2016), "Recent developments of intumescent fire protection coatings for structural steel: A review", 34(2), 120-163. https://doi.org/10.1177/0734904115626720.
- Nguyen, T.T. and Tan, K.H. (2017), "Behaviour of composite floors with different sizes of edge beams in fire", J. Constr. Steel Res., 129, 28-41. https://doi.org/10.1016/j.jcsr.2016.10.018.
- Nguyen, T.T., Tan, K.H. and Burgess, I.W. (2015), "Behaviour of composite slab-beam systems at elevated temperatures: Experimental and numerical investigation", Eng. Struct., 82, 199-213. https://doi.org/10.1016/j.engstruct.2014.10.044
- Orhan, S. N. & Ozyazicioglu, M. H. (2019), "Evaluation of sternum closure methods by means of a nonlinear finite element analysis", Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(12), 1282-1291. 10.1177/0954411919880703
- Pantousa, D. and Mistakidis, E. (2017), "Rotational capacity of pre-damaged I-section steel beams at elevated temperatures", Steel Compos. Struct., 23(1), 53-66. https://doi.org/10.12989/scs.2017.23.1.053.
- Piloto, P.A.G., Balsa, C., Ribeiro, F. and Rigobello, R. (2020a), "Computational simulation of the thermal effects on composite slabs under fire conditions", Math. Comput. Sci., 10.1007/s11786-020-00466-0.
- Piloto, P.A.G., Balsa, C., Ribeiro, F.F. and Rigobello, R. (2020b), "Three-dimensional numerical analysis on the fire behaviour of composite slabs with steel deck", Lecture Notes in Civil Engineering.
- Piloto, P.A.G., Balsa, C., Santos, L.M.C. and Kimura, E.F.A. (2020c), "Effect of the load level on the resistance of composite slabs with steel decking under fire conditions", J. Fire Sci., 38(2), 212-231. 10.1177/0734904119892210.
- Podolski, D. (2017), "Temperature Distribution in Intumescent Coating Protected Steel Sections", Master of Philisophy, University of Manchester.
- Tan, K.H. and Nguyen, T.T. (2015), "Experimental and numerical evaluation of composite floor systems under fire conditions", J. Constr. Steel Res., 105, 86-96. https://doi.org/10.1016/j.jcsr.2014.11.002.
- Wang, L.L., Wang, Y.C., Yuan, J.F. and Li, G.Q. (2013), "Thermal conductivity of intumescent coating char after accelerated aging", 37(6), 440-456. https://doi.org/10.1002/fam.2137.
- Wang, Y., Jiang, Y., Huang, Z., Li, L., Huang, Y., Zhang, Y., Zhang, G., Zhang, X. and Duan, Y. (2021), "Post-fire behaviour of continuous reinforced concrete slabs under different fire conditions", Eng. Struct., 226, 10.1016/j.engstruct.2020.111342.
- Zhang, Y., Wang, Y.C., Bailey, C.G. and Taylor, A.P. (2012), "Global modelling of fire protection performance of intumescent coating under different cone calorimeter heating conditions", Fire Saf. J., 50, 51-62. http://dx.doi.org/10.1016/j.firesaf.2012.02.004.