DOI QR코드

DOI QR Code

APPLICATIONS OF SUBORDINATION PRINCIPLE FOR ANALYTIC FUNCTIONS CONCERNED WITH ROGOSINSKI'S LEMMA

  • Received : 2019.03.12
  • Accepted : 2020.11.06
  • Published : 2020.11.30

Abstract

In this paper, we improve a new boundary Schwarz lemma, for analytic functions in the unit disk. For new inequalities, the results of Rogosinski's lemma, Subordinate principle and Jack's lemma were used. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.

Keywords

References

  1. T. Akyel & B.N. Ornek: A Sharp Schwarz lemma at the boundary. J. Korean Soc. Math. Ser. B: Pure Appl. Math. 22 (2015), no. 3, 263-273.
  2. T.A. Azero glu & B.N. Ornek: A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations 58 (2013), 571-577. https://doi.org/10.1080/17476933.2012.718338
  3. H.P. Boas: Julius and Julia: Mastering the Art of the Schwarz lemma. Amer. Math. Monthly 117 (2010), 770-785. https://doi.org/10.4169/000298910x521643
  4. V.N. Dubinin: The Schwarz inequality on the boundary for functions regular in the disc. J. Math. Sci. 122 (2004), 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. G.M. Golusin: Geometric Theory of Functions of Complex Variable [in Russian]. 2nd edn., Moscow 1966.
  6. I.S. Jack: Functions starlike and convex of order α. J. London Math. Soc. 3 (1971), 469-474. https://doi.org/10.1112/jlms/s2-3.3.469
  7. M. Jeong: The Schwarz lemma and its applications at a boundary point. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 275-284.
  8. M. Jeong: The Schwarz lemma and boundary fixed points. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), 219-227.
  9. M. Mateljevic: Rigidity of holomorphic mappings & Schwarz and Jack lemma. DOI:10.13140/RG.2.2.34140.90249, In press.
  10. P.R. Mercer: Sharpened Versions of the Schwarz Lemma. J. Math. Anal. Appl. 205 (1997), 508-511. https://doi.org/10.1006/jmaa.1997.5217
  11. P.R. Mercer: Boundary Schwarz inequalities arising from Rogosinski's lemma. Journal of Classical Analysis 12 (2018), 93-97. https://doi.org/10.7153/jca-2018-12-08
  12. P.R. Mercer: An improved Schwarz Lemma at the boundary. Open Mathematics 16 (2018), 1140-1144. https://doi.org/10.1515/math-2018-0096
  13. R. Osserman: A sharp Schwarz inequality on the boundary. Proc. Amer. Math. Soc. 128 (2000) 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  14. B.N. Ornek & T. Duzenli: Bound Estimates for the Derivative of Driving Point Impedance Functions. Filomat 32 (2018), no. 18, 6211-6218.. https://doi.org/10.2298/FIL1818211O
  15. B.N. Ornek & T. Dzenli: Boundary Analysis for the Derivative of Driving Point Impedance Functions. IEEE Transactions on Circuits and Systems II: Express Briefs 65 (2018), no. 9, 1149-1153. https://doi.org/10.1109/TCSII.2018.2809539
  16. B.N. Ornek: Sharpened forms of the Schwarz lemma on the boundary. Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
  17. Ch. Pommerenke: Boundary Behaviour of Conformal Maps. Springer-Verlag, Berlin. 1992.