DOI QR코드

DOI QR Code

Quality Characteristics and Antioxidant Activities of Lotus (Nelumbo nucifera Gaertn.) Sprouts Grown Under Different Conditions

  • Lim, Seo-Hyeon (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, So-Hyeon (School of Applied Biosciences, Kyungpook National University) ;
  • Park, Jae-Jung (School of Applied Biosciences, Kyungpook National University) ;
  • Park, Yong-Sung (School of Applied Biosciences, Kyungpook National University) ;
  • Dhungana, Sanjeev Kumar (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Il-Doo (International Institute of Research and Development, Kyungpook National University) ;
  • Shin, Dong-Hyun (School of Applied Biosciences, Kyungpook National University)
  • Received : 2020.06.04
  • Accepted : 2020.11.09
  • Published : 2020.12.01

Abstract

Lotus (Nelumbo nucifera Gaertn.) is an economically important aquatic ornamental herb with multiple uses, including food, tea, natural pigments, and/or healthcare product. The objective of this study was to evaluate the physicochemical properties and antioxidant potential of lotus sprouts grown in three media: sprouting machine (LSSG), soil (LSSC), and mud (LSMC). The longest sprout was obtained in LSMC (4.79 and 26.79 cm) followed by LSSC (1.95 and 5.4 cm), and LSSG (0.60 and 2.85 cm) at 5 and 10 days, respectively. Higher amounts of total free amino acids were found in cotyledons (33.96, 21.45, and 38.90 mg/g) than in hypocotyls (15.77, 7.90, and 15.29 mg/g ) for LSSG, LSSC, and LSMC, respectively. The ratios of total essential to total non-essential amino acids were higher in hypocotyls (0.36, 0.31, and 0.46) than in cotyledons (0.34, 0.25, and 0.40), respectively. Similarly, the total polyphenol content of the hypocotyl of LSMC (50.33 ㎍ GAE/g) was the highest and that of the husk of LSSG (24.08 ㎍ GAE/g) was the lowest. Overall, the antioxidant potential of hypocotyl was higher than that of husk and cotyledon. The results indicated that the lotus sprouts grown in mud could be a good source of nutritional and natural antioxidants.

Keywords

References

  1. Adhikari, B., S.K. Dhungana, M.W. Ali, A. Adhikari, I.D. Kim and D.H. Shin. 2018. Resveratrol, total phenolic and flavonoid contents, and antioxidant potential of seeds and sprouts of Korean peanuts. Food Sci. Biotechnol. 27:1275-1284. https://doi.org/10.1007/s10068-018-0364-7
  2. Adhikari, B., S.K. Dhungana, M.W. Ali, A. Adhikari, I.D. Kim and D.H. Shin. 2019. Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J. Saudi Soc. Agric. Sci.18:437-442. https://doi.org/10.1016/j.jssas.2018.02.004
  3. Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181:1199-1200. https://doi.org/10.1038/1811199a0
  4. Debnath, T., P.J. Park, N.C.D. Nath, N.B. Samad, H.W. Park and B.O. Lim. 2011. Antioxidant activity of Gardenia jasminoides ellis fruit extracts. Food Chem. 128:697-703. https://doi.org/10.1016/j.foodchem.2011.03.090
  5. Dhakal, R., V.K. Bajpai and K.H. Baek. 2012. Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43:1230-1241. https://doi.org/10.1590/S1517-83822012000400001
  6. Dharmveer, M.S.S.A., K. Iqbal, A. Hussain and S. Mahato. 2016. Effect of different growing media on seed germination and growth parameters of Angelica glauca edgew. Indian Forester 142:1093-1099.
  7. Dhungana, S.K., B.R. Kim, J.H. Son, H.R. Kim and D.H. Shin. 2015. Comparative study of CaMsrB2 gene containing drought-tolerant transgenic rice (Oryza sativa L.) and non-transgenic counterpart. J. Agron. Crop Sci. 201:10-16. https://doi.org/10.1111/jac.12100
  8. Frankel, E.N. and A.S. Meyer. 2000. The problems of using one -dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agr. 80:1925-1941. https://doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4
  9. Gulewicz, P., C. Martinez-Villaluenga, J. Frias, D. Ciesiolka, K. Gulewicz and C. Vidal-Valverde. 2008. Effect of germination on the protein fraction composition of different lupin seeds. Food Chem. 107:830-844. https://doi.org/10.1016/j.foodchem.2007.08.087
  10. Je, J.Y., P.J. Park, W.K. Jung and S.K. Kim. 2005. Amino acid changes in fermented oyster (Crassostrea gigas) sauce with different fermentation periods. Food Chem. 91:15-18. https://doi.org/10.1016/j.foodchem.2004.05.061
  11. Jeon, S.H., Y.S. Cho and I.R. Rho. 2017. Evaluation of bioactive compounds in different tissues of sprouting okra. Hortic. Environ. Biotechnol. 58:514-521. https://doi.org/10.1007/s13580-017-0261-7
  12. Jung, H.A., S.E. Jin, R.J. Choi, D.H. Kim, Y.S. Kim, J.H. Ryu, D.W. Kim, Y.K. Son, J.J. Park and J.S. Choi. 2010. Antiamnesic activity of neferine with antioxidant and antiinflammatory capacities, as well as inhibition of ChEs and BACE1. Life Sci. 87:420-430. https://doi.org/10.1016/j.lfs.2010.08.005
  13. Kim, I.D., J.W. Lee, S.J. Kim, J.W. Cho, S.K. Dhungana, Y.S. Lim and D.H. Shin. 2014. Exogenous application of natural extracts of persimmon (Diospyros kaki Thunb.) can help in maintaining nutritional and mineral composition of dried persimmon. Afr. J. Biotechnol. 13:2231-2239. https://doi.org/10.5897/AJB2013.13503
  14. Kim, I.D., S.K. Dhungana, H.R. Kim and D.H. Shin. 2017. Quality characteristics and antioxidant potential of seeds of native Korean persimmon genotypes. Korean J. Plant Res. 30:670-678. https://doi.org/10.7732/KJPR.2017.30.6.670
  15. Kim, I.D., S.K. Dhungana, Y.G. Chae, N.K. Son and D.H. Shin. 2016. Quality characteristics of 'Dongchul' persimmon (Diospyros kaki Thunb.) fruit grown in Gangwondo, Korea. Korean J. Plant Res. 29:313-321. https://doi.org/10.7732/kjpr.2016.29.3.313
  16. Krogsgaard-Larsen, P. 1989. GABA receptors. In Receptor Pharmacology and Function: In Williams M., R.A. Glennon and P.M.W.M. Timmermans (eds.), Marcel Dekker Inc., New York, NY (USA). pp. 349-383.
  17. Kurutas, E.B. 2015. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 15:71. https://doi.org/10.1186/s12937-016-0186-5
  18. Lin, J.Y., A.R. Wu, C.J. Liu and Y.S. Lai. 2006. Suppressive effects of lotus plumule (Nelumbo nucifera Geartn) supplementation on LPS-induced systemic inflammation in a BALB/c mouse model. J. Food Drug Anal. 14:273-278.
  19. Luo, Y.W., W.H. Xie, X.X. Jin, Q. Wang and X.M. Zai. 2013. Effects of germination and cooking for enhanced in vitro iron, calcium and zinc bioaccessibility from faba bean, azuki bean and mung bean sprouts. CyTA-J. Food 11:318-323. https://doi.org/10.1080/19476337.2012.757756
  20. Mathowa, T., M.E. Madisa, C.M. Moshoeshoe, W. Mojeremane and C. Mpofu. 2014. Effect of different growing media on the growth and yield of jute mallow (Corchorus olitorius L.). Int. J. Res. Stud. Biosci. 2:153-163.
  21. Miller, N.J., C. Rice-Evans and M.J. Davies. 1993. A new method for measuring antioxidant activity. Biochem. Soc. Trans. 21:95S. https://doi.org/10.1042/bst021095s
  22. Mody, I., Y. De Koninck, T.S. Otis and I. Soltesz. 1994. Bridging the cleft at GABA synapses in the brain. Trends. Neurosci. 17:517-525. https://doi.org/10.1016/0166-2236(94)90155-4
  23. Mukherjee, P.K., D. Mukherjee, A.K. Maji, S. Rai and M. Heinrich. 2009. The sacred lotus (Nelumbo nucifera)-phytochemical and therapeutic profile. J. Pharm. Pharmacol. 61:407-422. https://doi.org/10.1211/jpp/61.04.0001
  24. Nikmaram, N., B.N. Dar, S. Roohinejad, M. Koubaa, F.J. Barba, R. Greiner and S.K. Johnson. 2017. Recent advances in γ-aminobutyric acid (GABA) properties in pulses: An overview. J. Sci. Food Agr. 97:2681-2689. https://doi.org/10.1002/jsfa.8283
  25. Nishimura, K., S. Horii, T. Tanahashi, Y. Sugimoto and J. Yamada. 2012. Synthesis and pharmacological activity of alkaloids from embryo of lotus, Nelumbo nucifera. Chem. Pharm. Bull. 61:ID c12-00820.
  26. Oh, C.H. and S.H. Oh. 2004. Effect of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 7:19-23. - https://doi.org/10.1089/109662004322984653
  27. Onishi, E., K. Yamada, T. Yamada, K. Kaji, H. Inoue, Y. Seyama and S. Yamashita. 1984. Comparative effects of crude drugs on serum lipids. Chem. Pharm. Bull. 32:646-650. https://doi.org/10.1248/cpb.32.646
  28. Pandey, K.B. and S.I. Rizvi. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2:270-278. https://doi.org/10.4161/oxim.2.5.9498
  29. Pham-Huy, L.A., H. He and C. Pham-Huy. 2008. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4:89.
  30. Poornima, P., C.F. Weng and V.V. Padma. 2014. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. Biofactors 40:121-131. https://doi.org/10.1002/biof.1115
  31. Purintraphiban, S. and Y. Xia. 2012. Effects of germination on chemical and functional properties of lotus seeds. Food Sci. 33:91-98.
  32. Park, J.J., Y.S. Park, S.K. Dhungana, I.D. Kim and D.H. Shin. 2020. Phytochemical and antioxidant properties of Korean wheat sprouts. Korean J. Plant Res. 33(3):170-182. https://doi.org/10.7732/KJPR.2020.33.3.170
  33. Reeds, P.J. 2000. Dispensable and indispensable amino acids for humans. J. Nutr. 130:1835S-1840S. https://doi.org/10.1093/jn/130.7.1835S
  34. Rubio, L.A., M. Muzquiz, C. Burbano, C. Cuadrado and M.M. Pedrosa. 2002. High apparent ileal digestibility of amino acids in raw and germinated faba bean (Vicia faba)-and chickpea (Cicer arietinum)-based diets for rats. J. Sci. Food Agr. 82:1710-1717. https://doi.org/10.1002/jsfa.1228
  35. Singleton, V.L., R. Orthofer and R.M. Lamuela-Ravents. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent: In Packer, L. (ed.), Methods in Enzymology, Academic Press, Cambridge, MA. pp. 152-178.
  36. Sugimoto, Y., S. Furutani, A. Itoh, T. Tanahashi, H. Nakajima, H. Oshiro, S. Sun and J. Yamada. 2008. Effects of extracts and neferine from the embryo of Nelumbo nucifera seeds on the central nervous system. Phytomedicine 15:1117-1124. https://doi.org/10.1016/j.phymed.2008.09.005
  37. Wu, Y.B., L.J. Zheng, J. Yi, J.G. Wu, C.J. Tan, T.Q. Chen, J.Z. Wu and K.H. Wong. 2011. A comparative study on antioxidant activity of ten different parts of Nelumbo nucifera Gaertn. Afr. J. Pharm. Pharmacol. 5:2454-2461.
  38. Yu, L., Q. Shen, Q. Zhou, H. Jiang, H. Bi, M. Huang, H. Zhou and S. Zeng. 2013. In vitro characterization of ABC transporters involved in the absorption and distribution of liensinine and its analogs. J. Ethnopharmacol. 150:485-491. https://doi.org/10.1016/j.jep.2013.08.061
  39. Zhang, X., Z. Liu, B. Xu, Z. Sun, Y. Gong and C. Shao. 2012. Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. Eur. J. Pharmacol. 677:47-54. https://doi.org/10.1016/j.ejphar.2011.12.035
  40. Zhu, M., T. Liu and M. Guo. 2016. Current advances in the metabolomics study on lotus seeds. Front. Plant Sci. 7:891.

Cited by

  1. 땅콩과 땅콩새싹 추출물의 resveratrol과 aspartic acid 함량분석 및 지방세포분화 억제효능 vol.34, pp.4, 2021, https://doi.org/10.7732/kjpr.2021.34.4.395