DOI QR코드

DOI QR Code

Separation Behavior of Vanadium and Tungsten from the Spent SCR DeNOX Catalyst by Strong Basic Anion Exchange Resin

SCR 탈질 폐촉매로부터 강염기성 음이온교환수지를 이용한 바나듐/텅스텐 분리거동 고찰

  • Heo, Seo-Jin (Department of Chemical Engineering, Kwangwoon University) ;
  • Jeon, Jong-Hyuk (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Chul-Joo (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Chung, Kueong-Woo (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Jeon, Ho-Seok (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoon, Ho-Sung (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources)
  • 허서진 (광운대학교 화학공학과) ;
  • 전종혁 (한국지질자원연구원 DMR 융합연구단) ;
  • 김철주 (한국지질자원연구원 광물자원본부) ;
  • 정경우 (한국지질자원연구원 광물자원본부) ;
  • 전호석 (한국지질자원연구원 광물자원본부) ;
  • 윤도영 (광운대학교 화학공학과) ;
  • 윤호성 (한국지질자원연구원 광물자원본부)
  • Received : 2020.08.13
  • Accepted : 2020.09.14
  • Published : 2020.10.30

Abstract

In this study, factors affecting the adsorption reaction for the separation/recovery of V and W using Lewatit monoplus MP 600, a strong basic anion exchange resin, from the leachate obtained through the soda roasting-water leaching process from the spent SCR DeNOX catalyst investigated and the adsorption mechanism was discussed based on the results. In the case of the mixed solution of V and W, both ions showed a high adsorption ratio at pH 2-6, but the adsorption of W was greatly reduced at pH 8. In the adsorption isothermal experiment, both V and W were fitted well at the Langmuir adsorption isotherm, and the reaction kinetics were fitted well at pseudo-second-order. As a result of conducting an adsorption experiment by adjusting the pH with H2SO4 to remove Si, which inhibits the adsorption of V and W from the leachate, the lowest W adsorption ratio was shown at pH 8.5. Desorption of W was hardly achieved in strongly acidic solutions, and desorption of V was well performed in both strongly acidic and strongly basic solutions.

본 연구에서는 SCR 탈질 폐촉매의 소다배소-수침출 공정을 통해 얻은 침출액으로부터 강염기성 음이온교환수지인 Lewatit monoplus MP 600을 사용하여, V과 W의 분리/회수를 위한 흡착반응에 영향을 미치는 인자들에 대하여 알아보고, 이를 통하여 흡착 메커니즘을 조사하였다. V과 W 혼합용액의 경우 pH 2-6에서는 두 이온 모두 높은 흡착률을 보였지만, pH 8에서 W의 흡착은 크게 저하되었다. 흡착등온실험에서 V과 W 모두 Langmuir 흡착등온식에 적합하였고, 반응속도론적 고찰 결과 pseudo-second-order에 적합하였다. 침출액에서 V과 W의 흡착을 저해하는 Si를 제거하기 위하여 H2SO4로 pH를 조절하여 흡착실험을 수행한 결과, pH 8.5에서 가장 낮은 W 흡착률을 보였다. W의 탈착은 강산성 용액에서 거의 이루어지지 않았으며 V은 강산성 용액과 강염기성 용액 모두에서 탈착이 잘 이루어졌다.

Keywords

References

  1. Matsuda, S., and Kato, A., 1983 : Titanium oxide based catalysts-a review, Applied Catalysis, 8(2), pp.149-165. https://doi.org/10.1016/0166-9834(83)80076-1
  2. Kim, K. H., Bae, K. J., 2007 : Denitrification Technology (SCR) Trend and Nano-catalyst, Korean Industrial Chemistry News, 10(4), pp.45-59.
  3. Lee, S. J., Hong, S. C., 2008 : Deactivation and regeneration of a used de-NOX SCR catalyst for wastes incinerator, Journal of the Korean Industrial and Engineering Chemistry, 19(3), pp.259-263.
  4. Jeon, J. H., Kim, Y. H., Hwang, I. S., et al., 2013 : Adsorption/Desorption Characteristics of Vanadium from Ammonium Metavanadate using Anion Exchange Resin, Journal of the Korean Institute of Resources Recycling, 22(1), pp.55-63. https://doi.org/10.7844/kirr.2013.22.1.55
  5. Jeon, J. H., Kim, Y. H., Lee, J. Y., et al., 2014 : Adsorption/Desorption of Tungsten from Ammonium Tungstate Pentahydrate using Anion Exchange Resins, Journal of the Korean Institute of Resources Recycling, 51(3), pp.339-348.
  6. Baek, K. W., Park, S. W., Nho, Y. C., et. al., 2007 : Synthesis of High Loading PONF-g-GMA Anion Exchange Fiber Containing Ion Exchange Resin and Their Adsorption Properties of Vanadium, Polymer (Korea), 31(4), pp.315-321.
  7. Wu, W. C., Tsai, T. Y., Shen, Y. H., 2016 : Tungsten recovery from spent SCR catalyst using alkaline leaching and ion exchange, Minerals, 6(4), p.107 https://doi.org/10.3390/min6040107
  8. Yeh, Z. W., Shih, Y. Y., Shen, Y, H., 2017 : Recycle of Vanadium from waste SCR catalysts by series ion exchange column, 14th International Symposium on East Asian Resources Recycling Technology, EARTH 2017.
  9. Hu, J., Wang, X., Xiao, L., et al., 2009 : Removal of vanadium from molybdate solution by ion exchange, Hydrometallurgy, 95(3-4), pp.203-206. https://doi.org/10.1016/j.hydromet.2008.05.051
  10. Wang, X., Wang, M., Shi, L., et al., 2010 : Recovery of vanadium during ammonium molybdate production using ion exchange, Hydrometallurgy, 104(2), pp.317-321. https://doi.org/10.1016/j.hydromet.2010.06.012
  11. Smith, B. J., Patrick, V. A., 2002 : Quantitative determination of sodium dodecatungstosilicate speciation by 183W nuclear magnetic resonance spectroscopy, Australian Journal of chemistry, 55(4), pp.281-286. https://doi.org/10.1071/CH01092
  12. Zhang, Q. L., Shen, P. W., 1991 : Titanium, vanadium and chromium, Inorganic Chemistry Series, 8, pp.238.
  13. Na, C. K., Han, M. Y., Park, H. J., 2011 : Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents (1), Journal of Korean Society of Environmental Engineers, 33(8), pp.606-616. https://doi.org/10.4491/KSEE.2011.33.8.606
  14. Na, C. K., Park, H. J., 2011 : Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents (II), Journal of Korean Society of Environmental Engineers, 33(11), pp.804-811. https://doi.org/10.4491/KSEE.2011.33.11.804
  15. Ali, M. S., Hamrouni, B., Bouguecha, S., et al., 2004 : Silica removal using ion-exchange resins, Desalination, 167(1), pp.273-279. https://doi.org/10.1016/j.desal.2004.06.136
  16. Takeno, Naoto., 2005 : Atlas of Eh-pH diagrams, Geological survey of Japan open file report, 419, p.102

Cited by

  1. SCR 탈질 폐촉매로부터 이온교환칼럼을 이용한 바나듐과 텅스텐의 분리 vol.30, pp.4, 2020, https://doi.org/10.7844/kirr.2021.30.4.54