DOI QR코드

DOI QR Code

Current Status of Magnesium Smelting and Recycling Technology

마그네슘의 제련 및 리사이클링 기술 현황

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • Received : 2020.08.31
  • Accepted : 2020.10.12
  • Published : 2020.10.30

Abstract

Magnesium is the third most abundant structural metal after aluminum and iron. Magnesium is the lightest metal in the common metals. It has a density 33 % less than aluminum and 77% lower than steel. However, the primary magnesium production process is highly energy intensive. The recycling of magnesium scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. However, the amount of recovered metal from scrap is limited because of the difficulties to remove the impurities in the scrap. This work provides an overview of the magnesium production and recycling process.

마그네슘은 구조용 금속 중 알루미늄과 철에 이어 세 번째로 풍부한 금속이다. 또 마그네슘은 범용 금속 중 가장 가벼운 금속으로, 밀도가 알루미늄보다 33 %, 철보다 77 % 낮다. 마그네슘 1차 지금을 생산하기 위해서는 다량의 에너지를 소비하지만, 마그네슘 스크랩을 리사이클링하면 1차 지금 생산과 비교하여 에너지 및 환경부하를 저감할 수 있다. 그러나 마그네슘 스크랩 중의 불순물 제거가 곤란하여 재생되는 양은 한정되어 있다. 본 논문에서는 마그네슘의 1차 지금 생산 및 리사이클링 공정에 대하여 고찰하였다.

Keywords

References

  1. Sohn, Ho-Sang, 2019 : Engineering of Resources Recycling, p.14, KNU Press, Daegu, Korea.
  2. Ball, C. J. P., 1957 : The History of Magnesium, J. INST. OF METALS, 69(1), pp.81-94.
  3. Bray Lee, E., 2020 : Mineral Commodity Summaries, Magnesium, p.102, U.S. Geological Survey.
  4. Park, Hyungkyu, Kang, Jungshin, Lee, Taehyuk, et al., 2019 : A Review on the Demand and Supply of Major Non-Ferrous Metals and their Recycling of Scraps during 2014-2018 in Korea, J. of Korean Inst. of Resources Recycling, 28(3), pp.68-76. https://doi.org/10.7844/KIRR.2019.28.3.68
  5. USGS, https://www.usgs.gov/centers/nmic/historical-statistics-mineral-and- material-commodities-united-states#mgmetal
  6. Alliance Magnesium, http://alliancemagnesium.com/magnesium/about- magnesium/
  7. Sameer Kumar, D., Sasanka Tara, C., Ravindra, K., et al., 2015 : Magnesium and Its Alloys in Automotive Applications - A Review, American Journal of Materials Science and Technology, 4(1), pp.12-30.
  8. Park, Hyungkyu, 2007 : Current Status of Magnesium Smelting and the Related Recycling Topics, J. of Korean Inst. of Resources Recycling, 16(2), pp.3-11.
  9. Wulandari, W., Brooks, G., Rhamdhani, M., et al., 2010 : Magnesium: current and alternative production routes, Proc. of Chemeca 2010, Engineering at the Edge, pp.347-357, 26-29 September 2010, Hilton Adelaide, South Australia. Barton, A.C.T.: Engineers Australia.
  10. Sohn, Ho-Sang, 2019 : Engineering of Resources Recycling, p.167, KNU Press, Daegu, Korea.
  11. Ketil, Amundsen, Terje, Kr. Aune, Per, Bakke, et al., 2012 : Magnesium, ULLMANN'S Encyclopedia of Industrial Chemistry Vol. 22, p.4, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
  12. Park, Hyung-kyu, Kim, Chul-Joo, Yoon, Ho-Sung, et al., 2009 : Preparation of Magnesium by Fused Salt Electrolysis Using Mono-Polar Cell, J. of Korean Inst. of Resources Recycling, 18(3), pp.62-68.
  13. Sohn, Ho-Sang, 2020 : Production Technology of Titanium by Kroll Process, J. of Korean Inst. of Resources Recycling, 29(4), pp.3-14. https://doi.org/10.7844/KIRR.2020.29.4.3
  14. Antrekowitsch, Helmut and Hanko, Gerhard, 2002 : Recycling of Different Types of Magnesium Scrap, Proc. of the Symp. jointly sponsored by the Magnesium Committee of the Light Metals Division of TMS with the Inter. Magnesium Association, pp.43-48, Seattle, 2002.
  15. Hanawalt, J. D., Nelson, C. E. and Peloubet J. A., 1942 : Corrosion Studies of Magnesium and Its Alloys, Trans. AIME, 147, pp.273-299.
  16. Hino, M., Yutaka Mitooka, Y., Murakami, M., et al., 2012 : Effect of laser cleaning on recyclability of magnesium scraps, Keikinzoku, 62(4), pp.165-169.
  17. Kimura, K., Horiguchi, Y., and Baba, N., 2003 : Recycling Technology for Magnesium Alloy Housings, FUJITSU, 54(6), pp.458-464.
  18. Koyanaka, S., Yamamoto, T., Kimura, M., et al., 2013 : Removal of Paint Impurities from Magnesium Alloy Scraps by Super-heated Steam Treatment, Resource Processing, 60(1), pp.41-45. https://doi.org/10.4144/rpsj.60.41
  19. Miyazawa, Y., Ohya, H., Komori, Y. et al., 2011 : Development of Recycling Technology by Using Superheated Steam, Resources Processing, 58(4), pp.131-135. https://doi.org/10.4144/rpsj.58.131
  20. Hanko, G., Antrekowitsch, H. and Ebner, P., 2002 : Recycling Automotive Magnesium Scrap, JOM, 54(2), pp. 51-54. https://doi.org/10.1007/BF02701075
  21. Friedrich, Horst E. and Mordike, Barry L., 2006 : Magnesium Technology-Metallurgy, Design Data, Applications, Ch. 9 Recycling, p.652, Springer-Verlag Berlin Heidelberg, Germany.
  22. Miyashita, H., Kawabe, T., Shimoda, M., et al., 2009 : In-line Recycling Technology for AZ91D Magnesium Alloy, Honda R&D Technical Review, 21(2), pp.108-113.
  23. Cao, Hanxue, Huang, Mengtao, Wang, Chengcheng et al., 2019 : Research status and prospects of melt refining and purification technology of magnesium alloys, Journal of Magnesium and Alloys, 7, pp.370-380. https://doi.org/10.1016/j.jma.2019.07.002
  24. Bell, S., Davis, B.. Javaid, A. et al., 2006 : Final Report on Refining Technologies of Magnesium, p.2, Enhanced Recycling, Action Plan 2000 on Climate Change, Minerals and Metals Program Report No. 2003-19(CF), Canada.
  25. Baek, Ui-Hyun, Lee, Byeong-Deok, Lee, Ki-Woo, et al., 2016 : Removal of Ca from Magnesium Melt by Flux Rening, Materials Transactions, 57(7), pp.1156-1164. https://doi.org/10.2320/matertrans.M2015426
  26. Seifeldin R. Mohamed, Semiramis Friedrich, and Bernd Friedrich, 2019 : Refining Principles and Technical Methodologies to Produce Ultra-Pure Magnesium for HighTech Applications, Metals 2019, 9(1), 85, pp.1-12.
  27. Wi, Chang-Hyun, Hong, Seong-Hun, and You, Byung-Don, 2010 : A Study on the Evaporation Behavior of Mag-nesium Alloy (AM50) Scrap Melt under Reduced Pressure, Kor. J. Met. Mater., 48(3), pp.241-247. https://doi.org/10.3365/KJMM.2010.48.03.241
  28. Inoue, M., Shima, M., Aida, T., et al., 2009 : Recycling from Mg-Al-Zn system alloy to the high-purity Mg-Zn alloy by the vacuum distillation method, Journal of Japan Institute of Light Metals, 59(11), pp.637-641. https://doi.org/10.2464/jilm.59.637
  29. Manojlovi, V., Kamberovi, Z., Sokie, M., et al., 2014 : Optimization of the Recycling Processes for Magnesium from a Highly Contaminated Waste, Materials and technology, 48(4), pp.571-575.
  30. Chino, Y., Mabuchi, M., Iwasaki, H., et al., 2004 : SolidState Recycling of Magnesium Alloy In-House Scraps, Materia Japan, 43(4), pp.270-274. https://doi.org/10.2320/materia.43.270
  31. Rahim, S.N. Ab, Lajis, M.A., and Ariffin, S., 2015 : A Review on Recycling Aluminum Chips by Hot Extrusion Process, Procedia CIRP, 26, pp.761-766. https://doi.org/10.1016/j.procir.2015.01.013
  32. Luo, P., McDonald, D. T., Palanisamy, S., et al., 2011 : Solid-state Recycling of Titanium Machining Chips by Severe Plastic Deformation, Procd. of the 12th World Conference on Tittanium, vol. 1, Ed. by Zhou, L., Chang, H., Lu, Y., et al., pp.234-238, June 19-24, 2011, China National Convention Center(CNCC), Beijing