DOI QR코드

DOI QR Code

Inhibitory Effect of Moriniafungin Produced by Setosphaeria rostrata F3736 on the Development of Rhizopus Rot

  • Park, Min Young (Department of Biosystems and Biotechnology, Korea University Graduate School) ;
  • Park, So Jung (Food-Biotech Research, LOTTE R&D Center) ;
  • Kim, Jae-Jin (Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University) ;
  • Lee, Dong Ho (Department of Biosystems and Biotechnology, Korea University Graduate School) ;
  • Kim, Beom Seok (Department of Biosystems and Biotechnology, Korea University Graduate School)
  • Received : 2020.09.09
  • Accepted : 2020.11.09
  • Published : 2020.12.01

Abstract

Rhizopus rot is a serious postharvest disease of various crops caused by Rhizopus spp. and controlled mainly by synthetic fungicides. We detected the antifungal activity of a culture extract of Setosphaeria rostrata F3736 against Rhizopus oryzae. The active ingredient was identified as moriniafungin, a known sordarin derivative, which showed minimum inhibitory concentrations of 1-8 ㎍/ml against Colletotrichum spp. and 0.03-0.13 ㎍/ml against Rhizopus spp. in vitro. Moriniafungin showed protective control efficacies against Rhizopus rot on apple and peach fruits. Treatment with 25 ㎍/ml moriniafungin delimited the lesion diameter significantly by 100% on R. oryzae-inoculated apple fruits compared with the non-treated control. Treatment with 0.04 ㎍/ml of moriniafungin reduced the lesion diameter significantly by 56.45%, and treatment with higher concentrations of 0.2-25 ㎍/ml reduced the lesion diameter by 70-90% on Rhizopus stolonifer var. stolonifer-inoculated peach fruit. These results suggest moriniafungin has potential as a control agent of postharvest diseases caused by Rhizopus spp.

Keywords

References

  1. Altomare, C., Perrone, G., Zonno, M. C., Evidente, A., Pengue, R., Fanti, F. and Polonelli, L. 2000. Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J. Nat. Prod. 63:1131-1135. https://doi.org/10.1021/np000023r
  2. Amadioha, A. C. 2001. Fungitoxic effects of some leaf extracts against Rhizopus oryzae causing tuber rot of potato. Arch. Phytopathol. Plant Prot. 33:499-507. https://doi.org/10.1080/03235400109383372
  3. Anke, T., Oberwinkler, F., Steglich, W. and Schramm, G. 1977. The strobilurins: new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J. Antibiot. 30:806-810. https://doi.org/10.7164/antibiotics.30.806
  4. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr-Dobrzanski, B. 2002. The strobilurin fungicides. Pest Manag. Sci. 58:649-662. https://doi.org/10.1002/ps.520
  5. Basilio, A., Justice, M., Harris, G., Bills, G., Collado, J., de la Cruz, M., Diez, M. T., Hernandez, P., Liberator, P., Nielsen Kahn, J., Pelaez, F, Platas, G., Schmatz, D., Shastry, M., Tormo, J. R., Andersen, G. R. and Vicente, F. 2006. The discovery of moriniafungin, a novel sorda rin derivative produced by Morinia pestalozzioides. Bioorg. Med. Chem. 14:560-566. https://doi.org/10.1016/j.bmc.2005.08.046
  6. Batta, Y. A. 2007. Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biol. Technol. 43:143-150. https://doi.org/10.1016/j.postharvbio.2006.07.010
  7. Bautista-Banos, S., Bosquez-Molina, E. and Barrera-Necha, L. L. 2014. Rhizopus stolonifer (soft rot). In: Postharvest decay: control strategies, ed. By S. Banos, pp. 1-44. Elsevier, London, UK.
  8. Bonnarme, P., Djian, A., Latrasse, A., Feron, G., Ginies, C., Du- rand, A. and Le Quere, J.-L. 1997. Production of 6-pentyl-α-pyrone by Trichoderma sp. from vegetable oils. J. Biotechnol. 56:143-150. https://doi.org/10.1016/S0168-1656(97)00108-9
  9. Clough, J. M., Anthony, V. M., de Fraine, P. J., Fraser, T. E. M., Godfrey, C. R. A., Godwin, J. R. and Youle, D. 1995. The synthesis of fungicidal β-methoxyacrylates. In: Proceedings of the Eighth International Congress of Pesticide Chemistry, eds. by N. N. Ragsdale, P. C. Kearney and J. R. Plimmer, pp. 59-73. American Chemical Society, Washington, DC, USA.
  10. Daferner, M., Mensch, S., Anke, T. and Sterner, O. 1999. Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z. Naturforsch. C J. Biosci. C 54:474-480. https://doi.org/10.1515/znc-1999-7-803
  11. Dennis, C. 1983. Post-harvest pathology of fruits and vegetables. Academic Press, London, UK. 264 pp.
  12. Deshmukh, S. K., Misra, J. K., Tewari, J. P. and Papp, T. 2016. Fungi: applications and management strategies. CRC Press, Boca Raton, FL, USA. 496 pp.
  13. Dominguez, J. M., Kelly, V. A., Kinsman, O. S., Marriott, M. S., de las Heras, F. G. and Martin, J. J. 1998. Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob. Agents Chemother. 42:2274-2278. https://doi.org/10.1128/aac.42.9.2274
  14. El-Katatny, M. H. and Emam, A. S. 2020. Control of postharvest tomato rot by spore suspension and antifungal metabolites of Trichoderma harzianum. J. Microbiol. Biotechnol. Food Sci. 1:1505-1528.
  15. Espinel-Ingroff, A., Fothergill, A., Ghannoum, M., Manavathu, E., Ostrosky-Zeichner, L., Pfaller, M., Rinaldi, M., Schell, W. and Walsh, T. 2005. Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J. Clin. Microbiol. 43:5243-5246. https://doi.org/10.1128/JCM.43.10.5243-5246.2005
  16. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004. Trichoderma species: opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2:43-56. https://doi.org/10.1038/nrmicro797
  17. Herreros, E., Martinez, C. M., Almela, M. J., Marriott, M. S., De Las Heras, F. G. and Gargallo-Viola, D. 1998. Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob. Agents Chemother. 42:2863-2869. https://doi.org/10.1128/aac.42.11.2863
  18. Horvat, R. J., Chapman, G. W. Jr., Robertson, J. A., Meredith, F. I., Scorza, R., Callahan, A. M. and Morgens, P. 1990. Comparison of the volatile compounds from several commercial peach cultivars. J. Agric. Food Chem. 38:234-237. https://doi.org/10.1021/jf00091a051
  19. Justice, M. C., Hsu, M.-J., Tse, B., Ku, T., Balkovec, J., Schmatz, D. and Nielsen, J. 1998. Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J. Biol. Chem. 273:3148-3151. https://doi.org/10.1074/jbc.273.6.3148
  20. Kim, B. S. and Hwang, B. K. 2007. Microbial fungicides in the control of plant diseases. J. Phytopathol. 155:641-653. https://doi.org/10.1111/j.1439-0434.2007.01314.x
  21. Liu, S.-Y., Lo, C.-T., Chen, C., Liu, M.-Y., Chen, J.-H. and Peng, K.-C. 2007. Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. J. Biochem. Biophys. Methods 70:391-395. https://doi.org/10.1016/j.jbbm.2006.09.003
  22. Northover, J. and Zhou, T. 2002. Control of rhizopus rot of peaches with postharvest treatments of tebuconazole, fludioxonil, and Pseudomonas syringae. Can. J. Plant Pathol. 24:144-153. https://doi.org/10.1080/07060660309506989
  23. Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S., Ruocco, M., Marra, R., Lombardi, N., Woo, S. L. and Lorito, M. 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot. 92:176-181. https://doi.org/10.1016/j.cropro.2016.11.010
  24. Paster, N. and Bullerman, L. B. 1988. Mould spoilage and mycotoxin formation in grains as controlled by physical means. Int. J. Food Microbiol. 7:257-265. https://doi.org/10.1016/0168-1605(88)90044-X
  25. Poole, P. R., Ward, B. G. and Whitaker, G. 1998. The effects of topical treatments with 6-pentyl-2-pyrone and structural analogues on stem end postharvest rots in kiwifruit due to Botrytis cinerea. J. Sci. Food Agric. 77:81-86. https://doi.org/10.1002/(SICI)1097-0010(199805)77:1<81::AID-JSFA6>3.0.CO;2-5
  26. Porter, N. 1985. Physicochemical and biophysical panel symposium biologically active secondary metabolites. Pestic. Sci. 16:422-427. https://doi.org/10.1002/ps.2780160419
  27. Qing, F. and Shiping, T. 2000. Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranefaciens. Plant Dis. 84:1212-1216. https://doi.org/10.1094/PDIS.2000.84.11.1212
  28. Roberts, R. G. 1990. Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology 80:526-530. https://doi.org/10.1094/Phyto-80-526
  29. Salem, E. A., Youssef, K. and Sanzani, S. M. 2016. Evaluation of alternative means to control postharvest Rhizopus rot of peaches. Sci. Hortic. 198:86-90. https://doi.org/10.1016/j.scienta.2015.11.013
  30. Scarselletti, R. and Faull, J. L. 1994. In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol. Res. 98:1207-1209. https://doi.org/10.1016/s0953-7562(09)80206-2
  31. Tanaka, M., Moriguchi, T., Kizuka, M., Ono, Y., Miyakoshi, S.- I. and Ogita, T. 2002. Microbial hydroxylation of zofimarin, a sordarin-related antibiotic. J. Antibiot. 55:437-441. https://doi.org/10.7164/antibiotics.55.437
  32. Tang, B., Pan, H., Tang, W., Zhang, Q., Ding, L. and Zhang, F. 2012. Fermentation and purification of cellulase from a novel strain Rhizopus stolonifer var. reflexus TP-02. Biomass Bioenergy 36:366-372. https://doi.org/10.1016/j.biombioe.2011.11.003
  33. Tripathi, P. and Dubey, N. K. 2004. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 32:235-245. https://doi.org/10.1016/j.postharvbio.2003.11.005
  34. Usall, J., Torres, R. and Teixido, N. 2016. Biological control of postharvest diseases on fruit: a suitable alternative? Curr. Opin. Food Sci. 11:51-55. https://doi.org/10.1016/j.cofs.2016.09.002
  35. Wisniewski, M. E. and Wilson, C. L. 1992. Biological control of postharvest diseases of fruits and vegetables: recent advances. HortScience 27:94-98. https://doi.org/10.21273/HORTSCI.27.2.94
  36. Zhang, H., Godana, E. A., Sui, Y., Yang, Q., Zhang, X. and Zhao, L. 2020. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: a review. Crit. Rev. Microbiol. 46:450-462. https://doi.org/10.1080/1040841X.2020.1794793