DOI QR코드

DOI QR Code

암모니아 농도에 따른 Rich-Ni 양극 소재의 전구체 형태와 특성 변화

Changes in the Shape and Properties of the Precursor of the Rich-Ni Cathode Materials by Ammonia Concentration

  • 박선혜 (충남대학교 신소재공학부) ;
  • 홍순현 (충남대학교 신소재공학부) ;
  • 전형권 (충남대학교 신소재공학부) ;
  • 김천중 (충남대학교 신소재공학부)
  • 투고 : 2020.10.12
  • 심사 : 2020.10.26
  • 발행 : 2020.11.27

초록

Due to the serious air pollution problem, interest in eco-friendly vehicles is increasing. Solving the problem of pollution will necessitate the securing of high energy storage technology for batteries, the driving force of eco-friendly vehicles. The reason for the continuing interest in the transition metal oxide LiMO2 as a cathode material with a layered structure is that lithium ions reveal high mobility in two-dimensional space. Therefore, it is important to investigate the effective intercalation and deintercalation pathways of Li+, which affect battery capacity, to understand the internal structure of the cathode particle and its effect on the electrochemical performance. In this study, for the cathode material, high nickel Ni0.8Co0.1Mn0.1(OH)2 precursor is synthesized by controlling the ammonia concentration. Thereafter, the shape of the primary particles of the precursor is investigated through SEM analysis; X-ray diffraction analysis is also performed. The electrochemical properties of LiNi0.8Co0.1Mn0.1O2 are evaluated after heat treatment.

키워드

참고문헌

  1. L. Liang, K. Du, Z. Peng, Y. Cao, J. Duan, J. Jiang and G. Hu, Electrochim. Acta, 130, 82 (2014). https://doi.org/10.1016/j.electacta.2014.02.100
  2. M.-H. Lee, Y.-J. Kang, S.-T. Myung and Y.-K. Sun, Electrochim. Acta, 50, 939 (2014). https://doi.org/10.1016/j.electacta.2004.07.038
  3. Y. Hinuma, Y. S. Meng, K. Kang and G. Ceder, Chem. Mater., 19, 1790 (2007). https://doi.org/10.1021/cm062903i
  4. R. Qiao, J. Liu, K. Kourtakis, M. G. Roelofs, D. L. Peterson, J. P. Duff, D. T. Deibler, L. A. Wray and W. Yang, J. Power Sources, 19, 1790 (2017).
  5. H.-J. Noh, S. Youn, C. S. Yoon and Y.-K. Sun, J. Power Sources, 233, 121 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063
  6. C.-K. Yang, L.-Y. Qi, Z. Zuo, R.-N. Wang, M. Ye, J. Lu, H.-H. Zhou, J. Power Sources, 331, 487 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.068
  7. G. Dutta, A. Manthiram, J. Goodenough and J.-C. Grenier, J. Solid State Chem., 96, 123 (1992). https://doi.org/10.1016/S0022-4596(05)80304-4
  8. H. H. Li, N. Yabuuchi, Y. S. Meng, S. Kumar, J. Breger, C. P. Grey, Y. Shao-Horn, Chem. Mater., 19, 2551 (2007). https://doi.org/10.1021/cm070139+
  9. S. Singhal and H. Iwahara, J. Electrochem. Soc., 143, 1168 (1996). https://doi.org/10.1149/1.1836614
  10. C. Cheng, L. Tan, H. Liu and X. Huang, Mater. Res. Bull., 46, 2032 (2001). https://doi.org/10.1016/j.materresbull.2011.07.004
  11. M. Wang, Y. Chen, F. Wu, Y. Su, L. Chen and D. Wang, Electrochim. Acta, 55, 8815 (2010). https://doi.org/10.1016/j.electacta.2010.08.022
  12. Y.-M. Choi, S.-I. Pyun and S.-I. Moon, Solid State Ionics, 89, 43 (1996). https://doi.org/10.1016/0167-2738(96)00269-X
  13. T. Hatsukade, A. Schiele, P. Hartmann, T. Brezesinski and J. R. Janek, ACS Appl. Mater. Interfaces, 10, 38892 (2018). https://doi.org/10.1021/acsami.8b13158
  14. L. Fan, D. Tang, D. Wang, Z. Wang and L. Chen, Nano Res., 9, 3903 (2016). https://doi.org/10.1007/s12274-016-1259-7