DOI QR코드

DOI QR Code

원통형 대책구조물의 배치조건에 따른 토석류의 충격하중에 대한 실험적 연구

Experimental Study on the Effect of Arrangement of Cylindrical Countermeasures on Debris Flow Impact Load

  • 조흥석 (강릉원주대학교 토목공학과) ;
  • 김범준 (강릉원주대학교 토목공학과) ;
  • 윤찬영 (강릉원주대학교 토목공학과)
  • Cho, Heungseok (Dept. of Civil Engrg., Gangneung-Wonju National Univ.) ;
  • Kim, Beomjun (Dept. of Civil Engrg., Gangneung-Wonju National Univ.) ;
  • Yune, Chanyoung (Dept. of Civil Engrg., Gangneung-Wonju National Univ.)
  • 투고 : 2020.10.23
  • 심사 : 2020.11.03
  • 발행 : 2020.11.30

초록

본 연구에서는 원통형 대책구조물의 배치조건에 따라 각각의 대책구조물에 작용하는 토석류의 충격하중을 확인하기 위해, 대책구조물이 설치가 가능한 소형수로에서 대책구조물의 종방향 배열 수를 변화시켜가면서 실내모형실험을 수행하였다. 이를 바탕으로 토석류의 충격하중에 따른 흐름특성을 확인하고, 속도 및 흐름깊이에 따른 프루드 수와 동적압력계수를 분석하였다. 실험결과, 모든 조건에서 두 번째 대책구조물에서 최대충격하중이 가장 컸으며, 기존의 연구와 비교하여 동적압력계수 산정방법을 제안하고 그 값을 비교 분석하였다.

In this study, to investigate the effect of the array of cylindrical baffles on debris flow impact load, a series of small-scale tests were conducted according to varying row numbers of installed baffles in the flume. After the test, the behavior of debris flow interacting with baffles during the flow process was investigated. Based on the results, the influence varying velocity and flow depth on Froude number and dynamic pressure coefficient were analyzed. Test results showed that the greatest peak impact load occurred at the second row of baffle arrays. The dynamic pressure coefficient was also estimated by suggested equation and compared with previous studies.

키워드

참고문헌

  1. Armanini, A., Larcher, M., and Odorizzi, M. (2011), Dynamic Impact of a Debris Flow Front Against a Vertical Wall, In Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Padua, Italy, pp.1041-1049.
  2. Choi, C. E., Au-Yeung, S. C. H., Ng, C. W. W., and Song, D. (2015a), Flume Investigation of Landslide Granular Debris and Water Runup Mechanisms, Geotechnique Letters, Vol.5, pp.28-32. https://doi.org/10.1680/geolett.14.00080
  3. Choi, C. E., Ng, C. W. W., Song, D., Kwan, J. S. H., Shiu, H. Y. K., Ho, K. K. S., and Koo, R. C. H. (2014), Flume Investigation of Landslide Debris-resisting Baffles, Canadian Geotechnical Journal, Vol.51, No.5, pp.540-553. https://doi.org/10.1139/cgj-2013-0115
  4. Cui, P., Zeng, C., and Lei, Y. (2015), Experimental Analysis on the Impact Force of Viscous Debris Flow, Earth Surface Processes and Landforms, Vol.40, No.12, pp.1644-1655. https://doi.org/10.1002/esp.3744
  5. Federal Highway Administration (2006), Hydraulic design of energy dissipators for culverts and channels, Hydraulic Engineering Circular, No.14, Third Edition.
  6. HuBl, J. and Holzinger, G. (2003), Development of design basis for crest open structures for debris flow management in torrents:miniaturized tests for the efficiency estimation of debris flow breakers, WLS Report.
  7. Hubl, J., Suda, J., Proske, D., Kaitna, R., and Scheidl, C. (2009), Debris Flow Impact Estimation, In Proceedings of the 11th International Symposium on Water Management and Hydraulic Engineering, Ohrid, Macedonia, pp.1-5.
  8. Jun, K. J., Lee, S. D., Kim, G. H., Lee, S. W., and Yune, C. Y. (2015), Verification of countermeasures by velocity estimation of real scale debris flow test, 6th International Conference on Debris flow Hazard Mitigation : Mechanics, Prediction and Assessment, Japan, DFHM 6TH International Conference on Debris-flow.
  9. Jianbo, F., Yuxin, J., Xiaohui, S., and Xi, C. (2020), Experimental investigation on granular flow past baffle piles and numerical simulation using a (I)-rheology-based approach, Power Technology, Vol.359, pp.36-46. https://doi.org/10.1016/j.powtec.2019.09.069
  10. KFS (2014), "Erosion Control Technical Manual".
  11. Kim, B. J., Cho, H. S., C. E., and Yune, C. Y. (2019b), Analysis on Effect of Debris Flow Energy Mitigation by Arrangement of Cylindrical Countermeasures, Journal of Korean Geo-Environmental Society, Vol.20, No.10, pp.15-27 (In Korean).
  12. Kim, S. D., Chun, K. W., Kim, S. W., and Jun, K. W. (2015), Korean Review of Crisis & Emergency Management, Vol.11, No.9, pp.65-77 (In Korean).
  13. Kang, H. S., Jeong, J. H., and Kim, Y. T. (2017), Rheological Properties of Weathered Soil of Debris Flow Disaster Area with Volumetric Concentration of Sediment, Journal of KOSHAM, Vol. 17, No.2, pp.195-206 (In Korean).
  14. Kang, H. S. and Kim, Y. T. (2013), Yield Stress and Viscosity Characteristics of Soils with Liquidity Index, Journal of KOSHAM, Vol.13, No.1, pp.169-175 (In Korean).
  15. Kim, B. J., Han, K. D., Choi, C. E., and Yune, C. Y. (2019a), An Experimental Study on Cylindrical Countermeasures for Dissipation of Debris Flow Energy, Journal of Korean Geo-Environmental Society, Vol.20, No.1, pp.57-65 (In Korean).
  16. Koo, R. C. H., Kwan, J. S. H., Ng, C. W. W., Lam, C., Song, D., and Pun, W. K. (2016), Velocity Attenuation of Debris Flows and a New Momentum-based Load Model for Rigid Barriers, Landslides, Vol.14, No.2, pp.617-629.
  17. Kang, S. H. and Lee, S. R. (2018), Debris Flow Susceptibility Assessment based on an Empirical Approach in the Central Region of South Korea, Geomorphology, Vol.308, pp.1-12. https://doi.org/10.1016/j.geomorph.2018.01.025
  18. Kim, S. D., Lee, H. J., and Chang, H. J. (2019), The Study for Analysis of Impact Force of Debris Flow According to the Location of Check Dam, Journal of the Korea Academia-Industrial cooperation Society, Vol.20, No.1, pp.409-418 (In Korean). https://doi.org/10.5762/KAIS.2019.20.1.409
  19. Kim, J. H., Lee, Y. S., and Park, K. B. (2010), A Study on Model Experimental for Evaluation of Debris Flow's Impact Force Characteristics, Journal of Korean Geotechnical Society, Vol.26, No.11, pp.5-15 (In Korean).
  20. Lee, K. S., Cho, S. H., Kim, J. H., and Yoo, B. S. (2017), Estimation of Debris Flow Impact Forces on Mitigation Structures Using Small-Scale Modelling, The Journal of Engineering Geology, Vol.27, No.3, pp.191-205 (In Korean). https://doi.org/10.9720/kseg.2017.3.191
  21. MLIT (2016), "River Design Criteria".
  22. MLIT (2018), "River Erosion Facility".
  23. MLITT (2007), "Explanation of technical guidelines for debris flow and driftwood countermeasure design".
  24. Ng, C. W. W., Choi, C. E., Song, D., Kwan, J. S. H., Shiu, H. Y. K., Ho, K. K. S., and Koo, R. C. H. (2014), Physical Modelling of Baffles Influence on Landslide Debris Mobility, Landslides, Vol.12, No.1, pp.1-18. https://doi.org/10.1007/s10346-014-0476-y
  25. O'Brien, J. S. and Julien, P. Y. (1988), Laboratory Analysis of Mudflow Properties, Journal of Hydraulic Engineering, Vol.114, No.8, pp.877-887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
  26. Proske, D., Suda, J., and Hubl, J. (2011), Debris flow impact estimation for breakers, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, Vol.5, No.2, pp. 143-155. https://doi.org/10.1080/17499518.2010.516227
  27. Scheidl, C., Chiari, M., Kaitna, R., Mulleger, M., Krawtschuk, A., Zimmermann, T., and Prosk, D. (2013), Survey in Geophysics, Vol.34, pp.121-140. https://doi.org/10.1007/s10712-012-9199-6
  28. Sun, H., You, Y., and Liu, JF. (2018), Experimental Study on Characteristics of Trapping and Regulating Sediment with an Open-type Check Dam in Debris Flow Hazard Mitigation, Journal of Mountain Science, Vol.15, No.9, pp.2001-2012. https://doi.org/10.1007/s11629-017-4619-1
  29. Tiberghien, D., Laigle, D., Naaim, M., Thibert, E., and Ousset, F. (2007), Experimental investigation of inter-action between mudflow and obstacle, Debris-flow hazards mitigation: mechanics, prediction and assessment, Millpress, Rotterdam, pp.681-687.
  30. Wang, F., Chen, J., and Chen, X. (2017a), Experimental Study on the Energy Dissipation Characteristics of Debris Flow Deceleration Baffles, Journal of Mountain Science, Vol.14, No.10, pp.1951-1960. https://doi.org/10.1007/s11629-016-3868-8
  31. Wang, F., Chen, X., Chen, J., and You, Y. (2017b), Experimental Study on a Debris-flow Drainage Channel with Different Types of Energy Dissipation Baffles, Engineering Geology, Vol.220, pp.43-51. https://doi.org/10.1016/j.enggeo.2017.01.014
  32. Wang, D., Li, Q., Bi, Y., and He, S. (2020), Effects of New Baffles System under the Impact of Rock Avalanches, Engineering Geology, Vol.264, pp.105261. https://doi.org/10.1016/j.enggeo.2019.105261
  33. Wang, Y., Liu, X., Yao, C., Li, Y., Liu, S., and Zhang, X. (2018), Finite Release of Debris Flows around Round and Square Piers, Journal of Hydraulic Engineering, Vol.144, No.12. pp.06018015 https://doi.org/10.1061/(asce)hy.1943-7900.0001542