DOI QR코드

DOI QR Code

수화 반응에 따른 MgO-모래 혼합물의 팽창 특성 및 전단 거동 변화

Effect of Hydration on Swelling Properties and Shear Strength Behavior of MgO-sand Mixture

  • 이지환 (고려대학교 건축사회환경공학부) ;
  • 윤보영 (고려대학교 건축사회환경공학부) ;
  • 추현욱 (경희대학교 사회기반시스템공학과) ;
  • 이우진 (고려대학교 건축사회환경공학부) ;
  • 이창호 (전남대학교 토목공학과)
  • Lee, Jihwan (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Yoon, Boyoung (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Choo, Hyunwook (Dept. of Civil Engrg., Kyung hee Univ.) ;
  • Lee, Woojin (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Changho (Dept. of Civil Engrg., Chonnam National Univ.)
  • 투고 : 2020.10.06
  • 심사 : 2020.10.20
  • 발행 : 2020.11.30

초록

본 연구에서는 산화 마그네슘(MgO) 무게비에 따른 WMgO/WTotal=0, 30, 50, 70, 100%) MgO-모래 혼합물의 팽창특성과 수화 반응 전·후 전단거동을 비교하였다. 시료는 MgO 함량이 높은 내화벽돌을 파쇄하여 모래와 혼합하여 조성하였다. MgO는 수화반응 후 Mg(OH)2로 분화되어 비중 및 입자 크기가 감소하였다. 미세구조 관찰과 X선 회절분석을 통해 MgO는 정육면체 구조인 Periclase에서 수화반응 후에 육각형 결정 구조인 Brucite로 변화하는 것을 확인하였다. MgO 함량이 증가함에 따라 팽창압과 팽창량은 증가하는 것으로 나타났다. 생성된 Mg(OH)2가 모래 입자 사이의 공극을 주로 채우게되는 MgO 함량 30% 시료는 팽창압과 팽창량이 상대적으로 매우 낮게 측정되었고, MgO 50% 이상의 시료에서는 Mg(OH)2가 모래 입자 사이의 공극을 채우고 난 후 모래 입자 또는 다른 Mg(OH)2를 밀어내기 때문에 팽창압과 팽창량이 급격히 증가하는 양상을 보였다. 직접전단시험 결과 수화반응 전 혼합물은 높은 MgO 함량에서는 부피 팽창거동을 보였고 낮은 MgO 함량에서는 부피 수축거동을 보였다. 그러나 수화반응 후 혼합물은 모두 부피 수축거동을 보였다. 수화반응 후 정규화된 전단강도의 한계 세립질 함량 (Fth)은 약 60% Mg(OH)2 비율로 나타났다.

Swelling properties and shear strength behavior of MgO-Sand mixtures with hydration procese of MgO are compared according to different MgO contents (WMgO/WTotal=0, 30, 50, 70, 100%) in this study. The specimens are prepared by mixing with crushed MgO refractory bricks and silica sand. After hydration, the particle size and the specific gravity of MgO were decreases. Through microstructure observation and X-ray diffraction analysis, it is confirmed that MgO changes from the cubic structure of Periclase to the hexagonal cubic structure of Brucite after hydration. As the MgO content increases, both swelling rate and swelling pressure of the mixtures increase. WMgO/WTotal=30% specimen shows relatively low swelling pressure and swelling rate because produced Mg(OH)2 mainly fills the pores between sand particles. However, in the case of MgO more than 50%, swelling pressure and swelling rate increase significantly because Mg(OH)2 fills the pores of sand particles at first and then either pushes out sand particles or Mg(OH)2 particles after filling the pores. As a result of the direct shear test, before hydration, the mixtures show a dilative behavior on high MgO contents and a contractive behavior on low MgO contents. However, after hydration, the behavior of all mixtures changes to contractive behavior. The threshold fraction of fine (i.e., Mg(OH)2) contents of the hydrated MgO-Sand mixtures reveals approximately 60% compared with normalized shear strength.

키워드

참고문헌

  1. Al-Homoud, A., Basma, A., Husein Malkawi, A., and Al Bashabsheh, M. (1995), "Cyclic Swelling behavior of Clays", Journal of geotechnical engineering, Vol.121, No.7, pp.562-565. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:7(562)
  2. Amaral, L., Oliveira, I., Salomao, R., Frollini, E., and Pandolfelli, V. (2010), "Temperature and Common-ion Effect on Magnesium Oxide (MgO) Hydration", Ceramics International, Vol.36, No.3, pp.1047-1054. https://doi.org/10.1016/j.ceramint.2009.12.009
  3. Aphane, M. E. (2007), "The hydration of magnesium oxide with different reactivities by water and magnesium acetate", Master Thesis, University of South Africa.
  4. ASTM-D2488 (2017), "Standard Practice for Description and Identification of Soils (Visual-Manual Procedures)", Annual Book of ASTM Standards, ASTM.
  5. ASTM-D3080/D3080M (2011), "Standard test method for direct shear test of soils under consolidated drained conditions", Annual Book of ASTM Standards, ASTM, West Conshohocken, PA.
  6. ASTM-D4318 (2017), "Standard test methods for liquid limit, plastic limit, and plasticity index of soils", Annual Book of ASTM Standards, ASTM, West Conshohocken, PA.
  7. ASTM-D5321 (2020), "Standard test method for determining the shear strength of soil-geosynthetic and geosynthetic-geosynthetic interfaces by direct shear", Annual Book of ASTM Standards, ASTM, West Conshohocken, PA.
  8. ASTM-D6913 (2004), "Standard test methods for particle size distribution (gradation) of soils using sieve analysis", Annual Book of ASTM Standards, ASTM, West Conshohocken, PA.
  9. ASTM-D7928 (2016), "Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis", Annual Book of ASTM Standards, ASTM, West Conshohocken, PA.
  10. Bayoglu, E. (1995), "Shear strength and compressibility behavior of sand-clay mixtures", M.S. Thesis, Middle East Technical University, Turkey.
  11. BS1377 (1990), "Methods of test for soils for civil engineering purposes", British Standards Institution, Milton Keynes, UK.
  12. Chen, F. (1975), "Foundations on Expansive Soils, Elsevier Scientific Publication Company".
  13. Chen, F. H. (1975), Foundations on Expansive Soils, Elsevier Scientific Publishing Company.
  14. Chen, F. H. (2012), Foundations on expansive soils, Elsevier.
  15. Fredlund, D., Huang, S., Clifton, A., Wang, Q., Barbour, S., Ke, Z., and Fan, W., "Matric suction and deformation monitoring at an expansive soil site in southern China", Proc., Proceedings of International Conference on Unsaturated Soils. Rotterdam, Netherlands: AA Balkema, 835-862.
  16. Geiseler, J. (1996), "Use of steelworks slag in Europe", Waste management, Vol.16, No.1-3, pp.59-63. https://doi.org/10.1016/S0956-053X(96)00070-0
  17. Kenney (1977), "Residual strengths of mineral mixtures", Dept. of Civil Engineering, Univ. of Toronto, Toronto.
  18. Konishi, Y., H., M., and Ito, S. (2007), "Compression and Undrained Shear Characteristics of Sand-fines Mixtures with Various Plasticity", J. Geotech. Geoenviron. Eng, Vol.63, No.4, pp.1142-1152.
  19. Kurata, S. and Fujishita, T. (1961), "Research on the engineering properties of sand-clay mixtures", Rep. Port Harbour Res. Inst, 389-424.
  20. Lade, P. V., Liggio, C., and Yamamuro, J. A. (1998), "Effects of Non-plastic Fines on Minimum and Maximum Void Ratios of Sand", Geotechnical testing journal, 21, pp.336-347. https://doi.org/10.1520/GTJ11373J
  21. Lupinl, J., Skinner, A., and Vaughan, P. (2009), "The drained residual strength of cohesive soils", Selected papers on geotechnical engineering by PR Vaughan, Thomas Telford Publishing, pp.88-120.
  22. Matabola, K. P., van der Merwe, E. M., Strydom, C. A., and Labuschagne, F. J. (2010), "The Influence of Hydrating Agents on the Hydration of Industrial Magnesium Oxide", Journal of Chemical Technology & Biotechnology, Vol.85, No.12, pp.1569-1574. https://doi.org/10.1002/jctb.2467
  23. Miller, E. A. and Sowers, G. F. (1958), "The strength characteristics of soil-aggregate mixtures & discussion", Highway research board bulletin (183).
  24. Nelson, J. and Miller, D. J. (1997), Expansive soils: problems and practice in foundation and pavement engineering, John Wiley & Sons.
  25. Nelson, J. D., Chao, K. C., Overton, D. D., and Nelson, E. J. (2015), Foundation Engineering for Expansive Soils, Wiley.
  26. Park, J. and Santamarina, J. C. (2017), "Revised Soil Classification System for Coarse-fine Mixtures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.143, No.8, pp.04017039. https://doi.org/10.1061/(asce)gt.1943-5606.0001705
  27. Phanikumar, B., Sharma, R. S., Rao, A. S., and Madhav, M. (2004), "Granular Pile Anchor Foundation (GPAF) System for Improving the Engineering behavior of Expansive Clay Beds", Geotechnical Testing Journal, Vol.27, No.3, pp.279-287.
  28. Rohde, L., Peres Nunez, W., and Augusto Pereira Ceratti, J. (2003), "Electric Arc Furnace Steel Slag: Base Material for Low-volume Roads", Transportation research record, Vol.1819, No.1, pp.201-207. https://doi.org/10.3141/1819b-26
  29. Sharma, D., Jain, M. P., Jain, G. S., Mohan, D., and Prakash, C. (1978), Hand book on underreamed and bored compaction pile foundations, Roorkee, Ind. : G.S. Jain.
  30. Simpson, D. and Evans, T. (2016), "Behavioral Thresholds in Mixtures of Sand and Kaolinite Clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol.142, No.2, pp.04015073. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001391
  31. Skempton, A. W. (1985), "Residual Strength of Clays in Landslides, Folded Strata and the Laboratory", Geotechnique, Vol.35, No.1, pp.3-18. https://doi.org/10.1680/geot.1985.35.1.3
  32. Son, G., Kim, J., Kim, S., Hong, G., and Lee, H. (2002), "철강용 폐내화물의 재활용", Ceramist, Vol.5, No.5, pp.35-42.
  33. Takano, Y., Nakagawa, M., Tsutsumi, N., Shinozaki, H., Kiso, E., and Hirashima, Y. (2015), "Explanation About the Development Process, Several Unique Characteristics and Application Examples on Steel Slag Hydrated Matrix (SSHM)", Nippon Steel & Sumitomo Metal Technical Report 109.
  34. Tembe, S., Lockner, D. A., and Wong, T. F. (2010), "Effect of Clay Content and Mineralogy on Frictional Sliding behavior of Simulated Gouges: Binary and Ternary Mixtures of Quartz, Illite, and Montmorillonite", Journal of Geophysical Research: Solid Earth, 115(B3).
  35. Tiwari, B. and Marui, H. (2005), "A New Method for the Correlation of Residual Shear Strength of the Soil with Mineralogical Composition", Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.9, pp.1139-1150. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1139)
  36. Ueda, T., Matsushima, T., and Yamada, Y. (2011), "Effect of Particle Size Ratio and Volume Fraction on Shear Strength of Binary Granular Mixture", Granular Matter, Vol.13, No.6, pp.731-742. https://doi.org/10.1007/s10035-011-0292-1
  37. Vallejo, L. E. (2001), "Interpretation of the Limits in Shear Strength in Binary Granular Mixtures", Canadian Geotechnical Journal, Vol.38, No.5, pp.1097-1104. https://doi.org/10.1139/t01-029
  38. Yildirim, I. Z. and Prezzi, M. (2009), "Use of Steel Slag in Subgrade Applications", FHWA/IN/JTRP-2009/32, Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, Indiana.