Acknowledgement
본 연구는 국토교통부 도시건축사업의 연구비지원(20AUDP-B099686-06)에 의해 수행되었습니다. 이 논문은 정부(교육과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2018R1A2A2A05023124). 이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019R1I1A1A01061960)
References
- Ahmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs Neurons: Comparison between Random Forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147, 77-89. https://doi.org/10.1016/j.enbuild.2017.04.038
- Barthelmes, V. M., Li, R., Andersen, R. K., Bahnfleth, W., Corgnati, S. P., & Rode, C. (2018). Profiling occupant behaviour in Danish dwellings using time use survey data. Energy and Buildings, 177, 329-340. https://doi.org/10.1016/j.enbuild.2018.07.044
- Benezeth, Y., Laurent, H., Emile, B., & Rosenberger, C. (2011). Towards a sensor for detecting human presence and characterizing activity. Energy and Buildings, 43(2-3), 305-314. https://doi.org/10.1016/j.enbuild.2010.09.014
- Candanedo, L. M., & Feldheim, V. (2016). Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models. Energy and Buildings, 112, 28-39. https://doi.org/10.1016/j.enbuild.2015.11.071
- Chen, Z., Jiang, C., & Xie, L. (2018). Building occupancy estimation and detection: A review. Energy and Buildings, 169, 260-270. https://doi.org/10.1016/j.enbuild.2018.03.084
- Costa, A., Keane, M. M., Torrens, J. I., & Corry, E. (2013). Building operation and energy performance: Monitoring, analysis and optimisation toolkit. Applied Energy, 101, 310-316. https://doi.org/10.1016/j.apenergy.2011.10.037
- Dodier, R. H., Henze, G. P., Tiller, D. K., & Guo, X. (2006). Building occupancy detection through sensor belief networks. Energy and buildings, 38(9), 1033-1043. https://doi.org/10.1016/j.enbuild.2005.12.001
- EBC, I. (2013). Annex 66: definition and simulation of occupant behavior in buildings.
- Feng, X., Yan, D., & Hong, T. (2015). Simulation of occupancy in buildings. Energy and Buildings, 87, 348-359. https://doi.org/10.1016/j.enbuild.2014.11.067
- Han, H., Guo, X., & Yu, H. (2016, August). Variable selection using mean decrease accuracy and mean decrease gini based on Random Forest. In 2016 7th ieee international conference on software engineering and service science (icsess), 219-224, IEEE.
- Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. Morgan Kaufmann.
- Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Technical report, 5.
- Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai, 14(2), 1137-1145.
- Korea National Statistical Office (2014). Time Use Survey
- Lever, J., Krzywinski, M., & Altman, N. (2016). Classification evaluation.
- Luengo, J., Fernandez, A., Garcia, S., & Herrera, F. (2011). Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling. Soft Computing, 15(10), 1909-1936. https://doi.org/10.1007/s00500-010-0625-8
- Moon, H. J. & Yoon, Y. R. (2017). A case study of machine learning technique for building energy analysis. Korean Institute of Architectural Sustainable Environment and Building Systems, 11(4), 18-24.
- Rowe, D. M. (2001). Activity rates and thermal comfort of office occupants in Sydney. Journal of Thermal Biology, 26(4-5), 415-418. https://doi.org/10.1016/S0306-4565(01)00053-5
- Ryu, S. H., & Moon, H. J. (2016). Development of an occupancy prediction model using indoor environmental data based on machine learning techniques. Building and Environment, 107, 1-9. https://doi.org/10.1016/j.buildenv.2016.06.039
- Schakib-Ekbatan, K., Cakici, F. Z., Schweiker, M., & Wagner, A. (2015). Does the occupant behavior match the energy concept of the building?-Analysis of a German naturally ventilated office building. Building and Environment, 84, 142-150. https://doi.org/10.1016/j.buildenv.2014.10.018
- Sung, J. A., Ryu, J. W., & Kim, M. W. (2003, April). A method processing missing values for data mining based on Artificial Neural Network. The Korean Institute of Information Scientists and Engineers, 30(1B), 446-448.
- Zhang, R., Lam, K. P., Chiou, Y. S., & Dong, B. (2012, June). Information-theoretic environment features selection for occupancy detection in open office spaces. In Building Simulation, 5(2), 179-188, Tsinghua Press. https://doi.org/10.1007/s12273-012-0075-6
- Zhang, S. (2012). Nearest neighbor selection for iteratively kNN imputation. Journal of Systems and Software, 85(11), 2541-2552. https://doi.org/10.1016/j.jss.2012.05.073