DOI QR코드

DOI QR Code

Current perspectives on atypical pneumonia in children

  • Shim, Jung Yeon (Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University of Medicine)
  • Received : 2019.04.23
  • Accepted : 2020.02.28
  • Published : 2020.12.15

Abstract

The major pathogens that cause atypical pneumonia are Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella pneumophila. Community-acquired pneumonia (CAP) caused by M. pneumoniae or C. pneumoniae is common in children and presents as a relatively mild and self-limiting disease. CAP due to L. pneumophila is very rare in children and progresses rapidly, with fatal outcomes if not treated early. M. pneumoniae, C. pneumoniae, and L. pneumophila have no cell walls; therefore, they do not respond to β-lactam antibiotics. Accordingly, macrolides, tetracyclines, and fluoroquinolones are the treatments of choice for atypical pneumonia. Macrolides are the first-line antibiotics used in children because of their low minimum inhibitory concentrations and high safety. The incidence of pneumonia caused by macrolide-resistant M. pneumoniae that harbors point mutations has been increasing since 2000, particularly in Korea, Japan, and China. The marked increase in macrolide-resistant M. pneumoniae pneumonia (MRMP) is partly attributed to the excessive use of macrolides. MRMP does not always lead to clinical nonresponsiveness to macrolides. Furthermore, severe complicated MRMP responds to corticosteroids without requiring a change in antibiotic. This implies that the hyper-inflammatory status of the host can induce clinically refractory pneumonia regardless of mutation. Empirical macrolide therapy in children with mild to moderate CAP, particularly during periods without M. pneumoniae epidemics, may not provide additional benefits over β-lactam monotherapy and can increase the risk of MRMP.

Keywords

References

  1. Sharma L, Losier A, Tolbert T, Dela Cruz CS, Marion CR. Atypical pneumonia: updates on Legionella, Chlamydophila, and Mycoplasma pneumonia. Clin Chest Med 2017;38:45-58. https://doi.org/10.1016/j.ccm.2016.11.011
  2. Yu Y, Fei A. Atypical pathogen infection in community-acquired pneumonia. Biosci Trends 2016;10:7-13. https://doi.org/10.5582/bst.2016.01021
  3. Basarab M, Macrae MB, Curtis CM. Atypical pneumonia. Curr Opin Pulm Med 2014;20:247-51. https://doi.org/10.1097/MCP.0000000000000048
  4. Don M, Canciani M, Korppi M. Community-acquired pneumonia in children: what's old? What's new? Acta Paediatr 2010;99:1602-8. https://doi.org/10.1111/j.1651-2227.2010.01924.x
  5. Hammerschlag MR. Pneumonia due to Chlamydia pneumoniae in children: epidemiology, diagnosis, and treatment. Pediatr Pulmonol 2003; 36:384-90. https://doi.org/10.1002/ppul.10326
  6. Phares CR, Wangroongsarb P, Chantra S, Paveenkitiporn W, Tondella ML, Benson RF, et al. Epidemiology of severe pneumonia caused by Legionella longbeachae, Mycoplasma pneumoniae, and Chlamydia pneumoniae: 1-year, population-based surveillance for severe pneumonia in Thailand. Clin Infect Dis 2007;45:e147-55. https://doi.org/10.1086/523003
  7. Yang HJ, Song DJ, Shim JY. Mechanism of resistance acquisition and treatment of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. Korean J Pediatr 2017;60:167-74. https://doi.org/10.3345/kjp.2017.60.6.167
  8. Tanaka T, Oishi T, Miyata I, Wakabayashi S, Kono M, Ono S, et al. Macrolide-resistant Mycoplasma pneumoniae infection, Japan, 2008-2015. Emerg Infect Dis 2017;23:1703-6. https://doi.org/10.3201/eid2310.170106
  9. Shadoud L, Almahmoud I, Jarraud S, Etienne J, Larrat S, Schwebel C, et al. Hidden selection of bacterial resistance to fluoroquinolones in vivo: the case of Legionella pneumophila and humans. EBioMedicine 2015;2: 1179-85. https://doi.org/10.1016/j.ebiom.2015.07.018
  10. Korea Centers for Disease Control and Prevention (KCDC). 2017 Guidelines for the antibiotic use in children with lower respiratory tract infections [Internet]. Cheongju (Korea): KCDC; 2017 [cited 2019 Mar 5]. Available from: https://www.cdc.go.kr/board.es?mid=a20507020000&bid=0019&tag=&act=view&list_no=138090.
  11. Izumikawa K. Clinical features of severe or fatal Mycoplasma pneumoniae pneumonia. Front Microbiol 2016;7:800. https://doi.org/10.3389/fmicb.2016.00800
  12. Korea Centers for Disease Control and Prevention (KCDC). Infectious disease portal. Infectious disease surveillance yearbook 2017 [Internet]. Cheongju (Korea): KCDC; 2017 [cited 2019 Mar 5]. Available from: http://www.cdc.go.kr/npt/biz/npp/portal/nppPblctDtaMain.do.
  13. Matsubara K, Morozumi M, Okada T, Matsushima T, Komiyama O, Shoji M, et al. A comparative clinical study of macrolide-sensitive and macrolide-resistant Mycoplasma pneumoniae infections in pediatric patients. J Infect Chemother 2009;15:380-3. https://doi.org/10.1007/s10156-009-0715-7
  14. Shen Y, Zhang J, Hu Y, Shen K. Combination therapy with immunemodulators and moxifloxacin on fulminant macrolide-resistant Mycoplasma pneumoniae infection: a case report. Pediatr Pulmonol 2013;48:519-22. https://doi.org/10.1002/ppul.22650
  15. Luo Z, Luo J, Liu E, Xu X, Liu Y, Zeng F, et al. Effects of prednisolone on refractory mycoplasma pneumoniae pneumonia in children. Pediatr Pulmonol 2014;49:377-80. https://doi.org/10.1002/ppul.22752
  16. Yiallouros PK, Papadouri T, Karaoli C, Papamichael E, Zeniou M, Pieridou-Bagatzouni D, et al. First outbreak of nosocomial Legionella infection in term neonates caused by a cold mist ultrasonic humidifier. Clin Infect Dis 2013;57:48-56. https://doi.org/10.1093/cid/cit176
  17. Jain S, Self WH, Wunderink RG; CDC EPIC Study Team. Communityacquired pneumonia requiring hospitalization. N Engl J Med 2015;373:2382.
  18. Sohn JW, Park SC, Choi YH, Woo HJ, Cho YK, Lee JS, et al. Atypical pathogens as etiologic agents in hospitalized patients with community-acquired pneumonia in Korea: a prospective multi-center study. J Korean Med Sci 2006;21:602-7. https://doi.org/10.3346/jkms.2006.21.4.602
  19. Hammerschlag MR. Chlamydia trachomatis and Chlamydia pneumoniae infections in children and adolescents. Pediatr Rev 2004;25:43-51. https://doi.org/10.1542/pir.25-2-43
  20. Meyer Sauteur PM, Unger WW, Nadal D, Berger C, Vink C, van Rossum AM. Infection with and carriage of Mycoplasma pneumoniae in children. Front Microbiol 2016;7:329. https://doi.org/10.3389/fmicb.2016.00329
  21. Hickman-Davis JM, McNicholas-Bevensee C, Davis IC, Ma HP, Davis GC, Bosworth CA, et al. Reactive species mediate inhibition of alveolar type II sodium transport during mycoplasma infection. Am J Respir Crit Care Med 2006;173:334-44. https://doi.org/10.1164/rccm.200501-155OC
  22. Saraya T, Nakata K, Nakagaki K, Motoi N, Iihara K, Fujioka Y, et al. Identification of a mechanism for lung inflammation caused by Mycoplasma pneumoniae using a novel mouse model. Results Immunol 2011; 1:76-87. https://doi.org/10.1016/j.rinim.2011.11.001
  23. Shimizu T, Kida Y, Kuwano K. A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6. J Immunol 2005;175:4641-6. https://doi.org/10.4049/jimmunol.175.7.4641
  24. Yang J, Hooper WC, Phillips DJ, Talkington DF. Cytokines in Mycoplasma pneumoniae infections. Cytokine Growth Factor Rev 2004;15:157-68. https://doi.org/10.1016/j.cytogfr.2004.01.001
  25. Becker A, Kannan TR, Taylor AB, Pakhomova ON, Zhang Y, Somarajan SR, et al. Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from Mycoplasma pneumoniae. Proc Natl Acad Sci U S A 2015;112:5165-70. https://doi.org/10.1073/pnas.1420308112
  26. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, Martinez CM, Amores-Iniesta J, Compan V, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 2014;15:738-48. https://doi.org/10.1038/ni.2919
  27. Medina JL, Coalson JJ, Brooks EG, Le Saux CJ, Winter VT, Chaparro A, et al. Mycoplasma pneumoniae CARDS toxin exacerbates ovalbumin-induced asthma-like inflammation in BALB/c mice. PLoS One 2014;9:e102613. https://doi.org/10.1371/journal.pone.0102613
  28. Lee KY. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. Int J Mol Sci 2017;18:388. https://doi.org/10.3390/ijms18020388
  29. Saraya T, Kurai D, Nakagaki K, Sasaki Y, Niwa S, Tsukagoshi H, et al. Novel aspects on the pathogenesis of Mycoplasma pneumoniae pneumonia and therapeutic implications. Front Microbiol 2014;5:410.
  30. Yang EA, Kang HM, Rhim JW, Kang JH, Lee KY. Early corticosteroid therapy for Mycoplasma pneumoniae pneumonia irrespective of used antibiotics in children. J Clin Med 2019;8:726. https://doi.org/10.3390/jcm8050726
  31. Chen CJ, Juan CJ, Hsu ML, Lai YS, Lin SP, Cheng SN. Mycoplasma pneumoniae infection presenting as neutropenia, thrombocytopenia, and acute hepatitis in a child. J Microbiol Immunol Infect 2004;37:128-30.
  32. Fernald GW. Immunologic mechanisms suggested in the association of M. pneumoniae infection and extrapulmonary disease: a review. Yale J Biol Med 1983;56:475-9.
  33. Bastidas RJ, Elwell CA, Engel JN, Valdivia RH. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med 2013;3:a010256.
  34. Gotoh K, Nishimura N, Ohshima Y, Arakawa Y, Hosono H, Yamamoto Y, et al. Detection of Mycoplasma pneumoniae by loop-mediated isothermal amplification (LAMP) assay and serology in pediatric community-acquired pneumonia. J Infect Chemother 2012;18:662-7. https://doi.org/10.1007/s10156-012-0388-5
  35. Chen H, Weng H, Lin M, He P, Li Y, Xie Q, et al. The clinical significance of FilmArray respiratory panel in diagnosing community-acquired pneumonia. Biomed Res Int 2017;2017:7320859.
  36. Ou L, Lv Q, Wu C, Hao H, Zheng Y, Jiang Y. Development of a lateral flow immunochromatographic assay for rapid detection of Mycoplasma pneumoniae-specific IgM in human serum specimens. J Microbiol Methods 2016;124:35-40. https://doi.org/10.1016/j.mimet.2016.03.006
  37. Medjo B, Atanaskovic-Markovic M, Radic S, Nikolic D, Lukac M, Djukic S. Mycoplasma pneumoniae as a causative agent of community-acquired pneumonia in children: clinical features and laboratory diagnosis. Ital J Pediatr 2014;40:104. https://doi.org/10.1186/s13052-014-0104-4
  38. Yoo SJ, Oh HJ, Shin BM. Evaluation of four commercial IgG- and IgM-specific enzyme immunoassays for detecting Mycoplasma pneumoniae antibody: comparison with particle agglutination assay. J Korean Med Sci 2007;22:795-801. https://doi.org/10.3346/jkms.2007.22.5.795
  39. Lee SC, Youn YS, Rhim JW, Kang JH, Lee KY. Early serologic diagnosis of Mycoplasma pneumoniae pneumonia: an observational study on changes in titers of specific-IgM antibodies and cold agglutinins. Medicine (Baltimore) 2016;95:e3605. https://doi.org/10.1097/md.0000000000003605
  40. Chang HY, Chang LY, Shao PL, Lee PI, Chen JM, Lee CY, et al. Comparison of real-time polymerase chain reaction and serological tests for the confirmation of Mycoplasma pneumoniae infection in children with clinical diagnosis of atypical pneumonia. J Microbiol Immunol Infect 2014;47:137-44. https://doi.org/10.1016/j.jmii.2013.03.015
  41. Spuesens EB, Fraaij PL, Visser EG, Hoogenboezem T, Hop WC, van Adrichem LN, et al. Carriage of Mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: an observational study. PLoS Med 2013;10:e1001444. https://doi.org/10.1371/journal.pmed.1001444
  42. Beraud L, Gervasoni K, Freydiere AM, Descours G, Ranc AG, Vandenesch F, et al. Comparison of Sofia Legionella FIA and BinaxNOW® Legionella urinary antigen card in two national reference centers. Eur J Clin Microbiol Infect Dis 2015;34:1803-7. https://doi.org/10.1007/s10096-015-2415-9
  43. Lee SJ, Jung HH, Kim SK, Choi DH, Han SS, Nam EC, et al. The first isolation of Chlamydia pneumoniae from a Korean patient. Tuberc Respir Dis 2002;53:569-76. https://doi.org/10.4046/trd.2002.53.5.569
  44. Miyashita N, Kawai Y, Tanaka T, Akaike H, Teranishi H, Wakabayashi T, et al. Antibody responses of Chlamydophila pneumoniae pneumonia: why is the diagnosis of C. pneumoniae pneumonia difficult? J Infect Chemother 2015;21:497-501. https://doi.org/10.1016/j.jiac.2015.03.003
  45. Dowell SF, Peeling RW, Boman J, Carlone GM, Fields BS, Guarner J, et al. Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis 2001;33:492-503. https://doi.org/10.1086/322632
  46. Pierce VM, Elkan M, Leet M, McGowan KL, Hodinka RL. Comparison of the Idaho Technology FilmArray system to real-time PCR for detection of respiratory pathogens in children. J Clin Microbiol 2012;50:364-71. https://doi.org/10.1128/JCM.05996-11
  47. Li YN, Liu L, Qiao HM, Cheng H, Cheng HJ. Post-infectious bronchiolitis obliterans in children: a review of 42 cases. BMC Pediatr 2014;14:238. https://doi.org/10.1186/1471-2431-14-238
  48. Sung JJ, Kim EJ, Sun YH, Jeon IS, Tchah H, Ryoo E, et al. Clinical presentations of Chlamydia pneumoniae in children hospitalized for acute respiratory infections: a comparison to Mycoplasma pneumonia. Allergy Asthma Respir Dis 2015;3:346-51. https://doi.org/10.4168/aard.2015.3.5.346
  49. Smith CB, Friedewald WT, Chanock RM. Shedding of Mycoplasma pneumoniae after tetracycline and erythromycin therapy. N Engl J Med 1967;276:1172-5. https://doi.org/10.1056/NEJM196705252762103
  50. Germanakis I, Galanakis E, Parthenakis F, Vardas PE, Kalmanti M. Clarithromycin treatment and QT prolongation in childhood. Acta Paediatr 2006;95:1694-6. https://doi.org/10.1080/08035250600764800
  51. Sanchez AR, Rogers RS 3rd, Sheridan PJ. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity. Int J Dermatol 2004; 43:709-15. https://doi.org/10.1111/j.1365-4632.2004.02108.x
  52. McKenna BE, Lamey PJ, Kennedy JG, Bateson J. Minocycline-induced staining of the adult permanent dentition: a review of the literature and report of a case. Dent Update 1999;26:160-2. https://doi.org/10.12968/denu.1999.26.4.160
  53. Szarfman A, Chen M, Blum MD. More on fluoroquinolone antibiotics and tendon rupture. N Engl J Med 1995;332:193. https://doi.org/10.1056/NEJM199501193320319
  54. Rosanova MT, Lede R, Capurro H, Petrungaro V, Copertari P. Assessing fluoroquinolones as risk factor for musculoskeletal disorders in children: a systematic review and meta-analysis. Arch Argent Pediatr 2010;108:524-31. https://doi.org/10.1590/S0325-00752010000600008
  55. Forsythe CT, Ernst ME. Do fluoroquinolones commonly cause arthropathy in children? CJEM 2007;9:459-62. https://doi.org/10.1017/s1481803500015517
  56. Jackson MA, Schutze GE; Committee on Infectious Diseases. The use of systemic and topical fluoroquinolones. Pediatrics 2016;138:e20162706. https://doi.org/10.1542/peds.2016-2706
  57. Yamazaki T, Kenri T. Epidemiology of Mycoplasma pneumoniae infections in Japan and therapeutic strategies for macrolide-resistant M. pneumoniae. Front Microbiol 2016;7:693. https://doi.org/10.3389/fmicb.2016.00693
  58. Okubo Y, Michihata N, Morisaki N, Uda K, Miyairi I, Ogawa Y, et al. Recent trends in practice patterns and impact of corticosteroid use on pediatric Mycoplasma pneumoniae-related respiratory infections. Respir Investig 2018;56:158-65. https://doi.org/10.1016/j.resinv.2017.11.005
  59. Deguchi T, Ito S, Yasuda M, Sato Y, Uchida C, Sawamura M, et al. Surveillance of the prevalence of macrolide and/or fluoroquinolone resistance-associated mutations in Mycoplasma genitalium in Japan. J Infect Chemother 2018;24:861-7. https://doi.org/10.1016/j.jiac.2018.08.009
  60. Tamura A, Matsubara K, Tanaka T, Nigami H, Yura K, Fukaya T. Methylprednisolone pulse therapy for refractory Mycoplasma pneumoniae pneumonia in children. J Infect 2008;57:223-8. https://doi.org/10.1016/j.jinf.2008.06.012
  61. Blum CA, Nigro N, Briel M, Schuetz P, Ullmer E, Suter-Widmer I, et al. Adjunct prednisone therapy for patients with community-acquired pneumonia: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2015;385:1511-8. https://doi.org/10.1016/S0140-6736(14)62447-8
  62. Torres A, Sibila O, Ferrer M, Polverino E, Menendez R, Mensa J, et al. Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: a randomized clinical trial. JAMA 2015;313:677-86. https://doi.org/10.1001/jama.2015.88
  63. Martinez R, Menendez R, Reyes S, Polverino E, Cilloniz C, Martinez A, et al. Factors associated with inflammatory cytokine patterns in community-acquired pneumonia. Eur Respir J 2011;37:393-9. https://doi.org/10.1183/09031936.00040710
  64. Sibila O, Luna CM, Agusti C, Baquero S, Gando S, Patron JR, et al. Effects of glucocorticoids in ventilated piglets with severe pneumonia. Eur Respir J 2008;32:1037-46. https://doi.org/10.1183/09031936.00009208
  65. Hammerschlag MR, Chirgwin K, Roblin PM, Gelling M, Dumornay W, Mandel L, et al. Persistent infection with Chlamydia pneumoniae following acute respiratory illness. Clin Infect Dis 1992;14:178-82. https://doi.org/10.1093/clinids/14.1.178
  66. Chidiac C, Che D, Pires-Cronenberger S, Jarraud S, Campese C, Bissery A, et al. Factors associated with hospital mortality in community-acquired legionellosis in France. Eur Respir J 2012;39:963-70. https://doi.org/10.1183/09031936.00076911
  67. Williams DJ, Edwards KM, Self WH, Zhu Y, Arnold SR, McCullers JA, et al. Effectiveness of β-lactam monotherapy vs macrolide combination therapy for children hospitalized with pneumonia. JAMA Pediatr 2017; 171:1184-91. https://doi.org/10.1001/jamapediatrics.2017.3225
  68. Ambroggio L, Taylor JA, Tabb LP, Newschaffer CJ, Evans AA, Shah SS. Comparative effectiveness of empiric β-lactam monotherapy and β-lactam-macrolide combination therapy in children hospitalized with community-acquired pneumonia. J Pediatr 2012;161:1097-103. https://doi.org/10.1016/j.jpeds.2012.06.067
  69. Leyenaar JK, Shieh MS, Lagu T, Pekow PS, Lindenauer PK. Comparative effectiveness of ceftriaxone in combination with a macrolide compared with ceftriaxone alone for pediatric patients hospitalized with community-acquired pneumonia. Pediatr Infect Dis J 2014;33:387-92. https://doi.org/10.1097/INF.0000000000000119
  70. Bandell RA, Dekkers T, Semmekrot BA, de Wildt SN, Fleuren HW, Warlevan Herwaarden MF, et al. Macrolide prescription in Dutch children: compliance with guidelines. Eur J Clin Microbiol Infect Dis 2019;38:675-81. https://doi.org/10.1007/s10096-019-03473-7
  71. Mathur S, Fuchs A, Bielicki J, Van Den Anker J, Sharland M. Antibiotic use for community-acquired pneumonia in neonates and children: WHO evidence review. Paediatr Int Child Health 2018;38(sup1):S66-75. https://doi.org/10.1080/20469047.2017.1409455
  72. Uehara S, Sunakawa K, Eguchi H, Ouchi K, Okada K, Kurosaki T, et al. Japanese guidelines for the management of respiratory infectious diseases in children 2007 with focus on pneumonia. Pediatr Int 2011;53:264-76. https://doi.org/10.1111/j.1442-200X.2010.03316.x

Cited by

  1. Mycoplasma pneumoniae: Atypical Pathogen in Community Acquired Pneumonia vol.14, pp.4, 2020, https://doi.org/10.22207/jpam.14.4.04