DOI QR코드

DOI QR Code

신경망을 이용한 세일링 요트 리제너레이션 시스템의 배터리 충전 예측

Battery charge prediction of sailing yacht regeneration system using neural networks

  • 이태희 (한양대학교 전자공학부) ;
  • 황우성 (한양대학교 전기전자제어계측공학과) ;
  • 최명렬 (한양대학교 전자공학부)
  • Lee, Tae-Hee (Department of Electronic Engineering, Hanyang University) ;
  • Hwang, Woo-Sung (Department of Electronic, Electrical, Control & Instrumentation Engineering, Hanyang University) ;
  • Choi, Myung-Ryul (Division of Electronics Engineering, Hanyang University)
  • 투고 : 2020.08.26
  • 심사 : 2020.11.20
  • 발행 : 2020.11.28

초록

본 논문에서는 해양 전기추진 시스템과 딥러닝 알고리즘을 융합하여 전기추진 리제너레이션 시스템에서 DC/DC 컨버터 출력 전류 예측 및 리제너레이션 수행 시 배터리 충전량을 예측하기 위해 신경망 모델을 제안한다. 제안 된 신경망을 실험하기 위해 PCM의 입력 전압과 전류를 측정하고 시제품 PCM 보드의 출력 결과를 통해 데이터 세트를 구성하였다. 또한 불충분 한 데이터 세트에서 학습 결과를 향상시키기 위해 기존 데이터 세트를 데이터 피팅하여 학습을 진행하였다. 학습 후 신경망 모델의 데이터 예측 결과와 실제 측정 데이터의 차이를 그래프를 통해 확인하였다. 제안한 신경망 모델은 입력 전압과 전류 변화에 따른 배터리 충전량 예측을 효율적으로 보여주었다. 또한, DC/DC 컨버터를 구성하는 아날로그 회로의 특성변화를 신경망을 통하여 예측함으로써, 리제너레이션 시스템의 설계 시, 아날로그 회로의 특성을 고려해야 할 것으로 판단된다.

In this paper, we propose a neural network model to converge the marine electric propulsion system and deep learning algorithm to predict the DC/DC converter output current in the electric propulsion regeneration system and to predict the battery charge during regeneration. In order to experiment with the proposed neural network, the input voltage and current of the PCM were measured and the data set was secured on the prototype PCM board. In addition, in order to improve the learning results in the insufficient data set, the scale of the data set was increased through data fitting and its learning was executed further. After learning, the difference between the data prediction result of the neural network model and the actual measurement data was compared. The proposed neural network model effectively showed the prediction of battery charge according to changes in input voltage and current. In addition, by predicting the characteristic change of the analog circuit constituting the DC/DC converter through a neural network, it is determined that the characteristics of the analog circuit should be considered when designing the regeneration system.

키워드

참고문헌

  1. C. H. Choi & P. S. Jang. (2013). A Study on Design Trend of Next Generation Korean Electric Boat, Journal of Digital Convergence, 11(2), 407-412. https://doi.org/10.14400/JDPM.2013.11.2.407
  2. J. H. Lee, et al. (2016). Design&Research on Autonomous Electric Propulsion Ship System, The 2016 Spring Conference of The Korean Society of Mechanical Engineers Law review, 103-105.
  3. J. T. Park. et al. (2017). A Trend on the Technical Development of Electric Motors for Ship Propulsions, The 2001 Conference of The Korean Institue of Electrical Engineers, 632-634.
  4. Y. Le Cun, et al. (1998). Gradient-based learning applied to document recognition, Proceedings of the IEEE 86.11, 2278-2324. https://doi.org/10.1109/5.726791
  5. W. McCulloch & W. Pitts. (1943). A logical ca1culus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics 5.4, 115-133. https://doi.org/10.1007/BF02478259
  6. F. Rosenblatt. (1953). The perceptron: a probabilistic model for information storage and organization in the brain, Psychological review 65.6, 386. https://doi.org/10.1037/h0042519
  7. D. Montgomery, A. E. Peck & G. Vining. (2012). Introduction to linear regression analysis, John Wiley & Sons, 67-128.
  8. Y. Le Cun, et al. (1990). Handwritten digit recognition with a back-propagation network, Advances in neural information processing systems, 396-404.
  9. G. Hinton, S. Osindero & Y. The. (2006). A fast learning algorithm for deep belief nets, Neural computation 18(7). 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
  10. T. Y. Kim. (2019). Python Deep Learning Keras with Blocks, Digital books, 286-299.
  11. F. Gers, J. Schmidhuber & F. Cummins. (1999). Learning to forget: Continual prediction with LSTM, IEE, 2, 850-855.
  12. D. U. Jeong & S. W. Bae. (2020). Survey on Battery SOC Estimation Methods using Data-driven AI Algorithms, Power Electronics Conference, 363-364.
  13. J. M. Seo. et al. (2019). A Study on Bidirectional Coupled-Inductor Interleaved DC-DC Converter for Battery Charging and Discharging System, The 2019 Power Electronics Conference, 133-135..
  14. S. H. Lee & S. J. Joo. (2019). Study of bidirectional DCDC converter to prevent circulating current between battery packs, Journal of IKEEE 23(2), 695-703. https://doi.org/10.7471/IKEEE.2019.23.2.695
  15. Y. J. Kwon, et al. (2017). The Fourth Industrial Revolution and Marine Technology, Innovation studies, 203-222.