DOI QR코드

DOI QR Code

Beamforming Training for Asymmetric Links in IEEE 802.11ay: Implementation and Performance Evaluation

  • Kim, Yena (Institute of Engineering Research, Yonsei University)
  • Received : 2020.10.20
  • Accepted : 2020.11.04
  • Published : 2020.11.30

Abstract

In this paper, we present Beamforming (BF) Training (BFT) for asymmetric links in IEEE 802.11ay. IEEE 802.11ay introduced BFT for asymmetric links that aims to increase the BFT success probability for Station (STA) with insufficient link budget to communicate with an Access Point (AP). BFT for asymmetric links utilizes directional BFT allocation to avoid the usage of quasi-omni pattern at the AP side, and thus to increase STA's BFT success rate. However, there are no publicly available simulation tools supporting IEEE 802.11ay. For these reasons, we present in this paper an implementation of BFT for asymmetric links in ns-3 with its novel techniques such as Training RX (TRN-R) subfield and BFT allocation. We then evaluate by simulation the performance of BFT for asymmetric links.

본 연구에서는 IEEE 802.11ay의 비대칭 링크를 위한 Beamforming (BF) Training (BFT)을 소개하고 주요 기술을 구현하였다. 비대칭 링크를 위한 BFT는 Access Point (AP)와 통신하기에 불충분한 링크 버짓(link budget)을 가지고 있는 Station (STA)의 BFT 성공 확률 향상을 목표로 한다. 비대칭 링크를 위한 BFT는 AP의 quasi-omni 수신 모드 사용을 막기 위해 directional BFT allocation을 활용하며, 이를 통해 STA의 BFT 성공 확률을 높일 수 있다. 그러나 현재 IEEE 802.11ay를 지원하는 네트워크 시뮬레이터가 없어서 이러한 BFT의 성능 검증이 쉽지 않다. 본 연구는 ns-3에 비대칭 링크를 위한 BFT을 구현하고 Training RX (TRN-R) subfield와 BFT allocation과 같은 주요 기술에 대해서 소개한다. 새로 구현한 BFT의 성능 검증을 위해 시뮬레이션을 수행하였다.

Keywords

References

  1. A.N. Uwaechia and N.M. Mahyuddin, "A Comprehensive Survey on Millimeter Wave Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges," IEEE Access, vol. 8, pp. 62367-62414, March 2020. DOI:10.1109/ACCESS.2020.2984204
  2. K. Hassan, M. Masarra, M. Zwingelstein, and I. Dayoub, "Channel Estimation Techniques for Millimeter-Wave Communication Systems: Achievements and Challenges," IEEE Open Journal of the Communications Society, vol. 1, pp. 1336-1363, Aug. 2020. DOI:10.1109/OJCOMS.2020.3015394
  3. S. Payami et al., "Developing the First mmWave Fully-Connected Hybrid Beamformer With a Large Antenna Array," IEEE Access, vol. 8, pp. 141282-141291, July 2020. DOI:10.1109/ACCESS.2020.3013539
  4. S. Tomasin, C. Mazzucco, D. De Donno, and F. Cappellaro, "Beam-Sweeping Design Based on Nearest Users Position and Beam in 5G mmWave Networks," IEEE Access, vol. 8, pp. 124402-124413, June 2020. DOI: 10.1109/ACCESS.2020.3006015
  5. N. Gonzalez-Prelcic, H. Xie, J. Palacios, and T. Shimizu, "Wideband Channel Tracking and Hybrid Precoding for mmWave MIMO Systems," IEEE Transactions on Wireless Communications, Oct. 2020. DOI: 10.1109/TWC.2020.3033514
  6. "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band," IEEE Standard 802.11ad, 2012.
  7. "IEEE Draft Standard for Information Technology - Telecommunications and Information Exchange - Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless 14 LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 2: Enhanced throughput for operation in license-exempt bands above 45 GHz," IEEE Standard 802.11ay/D4.0, pp. 1-791, June 2019.
  8. C. Chen, O. Kedem, C.R.C.M. d. Silva, and C. Cordeiro, "Millimeter-Wave Fixed Wireless Access Using IEEE 802.11ay," IEEE Communications Magazine, vol. 57, no. 12, pp. 98-104, Dec. 2019. DOI:10.1109/MCOM.001.1900076
  9. A. Maltsev, A. Pudeyev, I. Bolotin, and O. Bolkhovskaya, "Asymmetric Links Beamforming for mmWave Overlay in LTE-Based Heterogeneous Network," in Proc. IEEE Vehicular Technology Conference (VTC-Fall), 2017.
  10. A. Maltsev, I. Bolotin, A. Pudeyev, A. Lomayev, C. Cordeiro, S. Training, and C. Chen, "Enhanced SLS BF Flow for Efficient AP-STA Access in Dense Environment," IEEE doc. 802.11-17/0067r1, Jan. 2017.
  11. H. Assasa, J. Widmer, T. Ropitault, and N. Golmie, "Enhancing the ns-3 IEEE 802.11ad Model Fidelity: Beam Codebooks, Multi-Antenna Beamforming Training, and Quasi-Deterministic mmWave Channel," in Proc. WNS3, June 2019.
  12. IMDEA Networks Institute, "WLAN IEEE 802.11ad model for ns-3," http://wireless.networks.imdea.org/wlan-ieee-80211ad-model-ns-3.
  13. Ns-3 Network Simulator, "The Network Simulator, NS-3," Available: http://www.nsnam.org/.
  14. Y. Kim, S. Lee, and T. Ropitault, "STS Adaptation for Beamforming Training of Asymmetric Links in IEEE 802.11ay-based Dense Networks," in Proc. Vehicular Technology Conference (VTC-Spring), 2020.