DOI QR코드

DOI QR Code

ON THE SOLVABILITY OF A FINITE GROUP BY THE SUM OF SUBGROUP ORDERS

  • Received : 2020.01.02
  • Accepted : 2020.07.09
  • Published : 2020.11.30

Abstract

Let G be a finite group and ${\sigma}_1(G)={\frac{1}{{\mid}G{\mid}}}\;{\sum}_{H{\leq}G}\;{\mid}H{\mid}$. Under some restrictions on the number of conjugacy classes of (non-normal) maximal subgroups of G, we prove that if ${\sigma}_1(G)<{\frac{117}{20}}$, then G is solvable. This partially solves an open problem posed in [9].

Keywords

References

  1. S. M. J. Amiri, Characterization of A5 and P SL(2, 7) by sum of element orders, Int. J. Group Theory 2 (2013), no. 2, 35-39.
  2. M. B. Azad and B. Khosravi, A criterion for solvability of a finite group by the sum of element orders, J. Algebra 516 (2018), 115-124. https://doi.org/10.1016/j.jalgebra.2018.09.009
  3. V. A. Belonogov, Finite groups with three classes of maximal subgroups, Math. USSRSb. 59 (1988), no. 1, 223-236; translated from Mat. Sb. (N.S.) 131(173) (1986), no. 2, 225-239. https://doi.org/10.1070/SM1988v059n01ABEH003132
  4. L. E. Dickson, Linear groups with an exposition of the Galois field theory, with an introduction by W. Magnus, Dover Publications, Inc., New York, 1958.
  5. M. Herzog, P. Longobardi, and M. Maj, Two new criteria for solvability of finite groups, J. Algebra 511 (2018), 215-226. https://doi.org/10.1016/j.jalgebra.2018.06.015
  6. T. De Medts and M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 4, 699-704. http://projecteuclid.org/euclid.bbms/1225893949
  7. D. J. S. Robinson, A Course in the Theory of Groups, second edition, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996. https://doi.org/10.1007/978-1-4419-8594-1
  8. R. Schmidt, Subgroup Lattices of Groups, De Gruyter Expositions in Mathematics, 14, Walter de Gruyter & Co., Berlin, 1994. https://doi.org/10.1515/9783110868647
  9. M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups II, Comm. Algebra 45 (2017), no. 11, 4865-4868. https://doi.org/10.1080/00927872.2017.1284228