References
- S. M. J. Amiri, Characterization of A5 and P SL(2, 7) by sum of element orders, Int. J. Group Theory 2 (2013), no. 2, 35-39.
- M. B. Azad and B. Khosravi, A criterion for solvability of a finite group by the sum of element orders, J. Algebra 516 (2018), 115-124. https://doi.org/10.1016/j.jalgebra.2018.09.009
- V. A. Belonogov, Finite groups with three classes of maximal subgroups, Math. USSRSb. 59 (1988), no. 1, 223-236; translated from Mat. Sb. (N.S.) 131(173) (1986), no. 2, 225-239. https://doi.org/10.1070/SM1988v059n01ABEH003132
- L. E. Dickson, Linear groups with an exposition of the Galois field theory, with an introduction by W. Magnus, Dover Publications, Inc., New York, 1958.
- M. Herzog, P. Longobardi, and M. Maj, Two new criteria for solvability of finite groups, J. Algebra 511 (2018), 215-226. https://doi.org/10.1016/j.jalgebra.2018.06.015
- T. De Medts and M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 4, 699-704. http://projecteuclid.org/euclid.bbms/1225893949
- D. J. S. Robinson, A Course in the Theory of Groups, second edition, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996. https://doi.org/10.1007/978-1-4419-8594-1
- R. Schmidt, Subgroup Lattices of Groups, De Gruyter Expositions in Mathematics, 14, Walter de Gruyter & Co., Berlin, 1994. https://doi.org/10.1515/9783110868647
- M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups II, Comm. Algebra 45 (2017), no. 11, 4865-4868. https://doi.org/10.1080/00927872.2017.1284228