Acknowledgement
This author is supported by Zhejiang Provincial NSFC (No. LY19A010021) and NNSFC (No.11671352).
References
- D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1268-3
- R. L. Bryant, Projectively flat Finsler 2-spheres of constant curvature, Selecta Math. (N.S.) 3 (1997), no. 2, 161-203. https://doi.org/10.1007/s000290050009
- R. L. Bryant, Geodesically reversible Finsler 2-spheres of constant curvature, in Inspired by S. S. Chern, 95-111, Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006. https://doi.org/10.1142/9789812772688_0004
- S.-S. Chern and Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. https://doi.org/10.1142/5263
- M. Crampin, Randers spaces with reversible geodesics, Publ. Math. Debrecen 67 (2005), no. 3-4, 401-409.
- Y. Feng and Q. Xia, On a class of locally projectively flat Finsler metrics (II), Differential Geom. Appl. 62 (2019), 39-59. https://doi.org/10.1016/j.difgeo.2018.09.004
- I. M. Masca, V. S. Sabau, and H. Shimada, Reversible geodesics for (α, β)-metrics, Internat. J. Math. 21 (2010), no. 8, 1071-1094. https://doi.org/10.1142/S0129167X10006355
- I. M. Masca, V. S. Sabau, and H. Shimada, Two dimensional (α, β)-metrics with reversible geodesics, Publ. Math. Debrecen 82 (2013), no. 2, 485-501. https://doi.org/10.5486/PMD.2013.5494
- X. Mo and H. Zhu, On a class of locally projectively flat general (α, β)-metrics, Bull. Korean Math. Soc. 54 (2017), no. 4, 1293-1307. https://doi.org/10.4134/BKMS.b160551
- Q. Xia, On a class of projectively flat Finsler metrics, Differential Geom. Appl. 44 (2016), 1-16. https://doi.org/10.1016/j.difgeo.2015.10.002
- Q. Xia, On a class of Finsler metrics of scalar flag curvature, Results Math. 71 (2017), no. 1-2, 483-507. https://doi.org/10.1007/s00025-016-0539-6
- C. Yu and H. Zhu, On a new class of Finsler metrics, Differential Geom. Appl. 29 (2011), no. 2, 244-254. https://doi.org/10.1016/j.difgeo.2010.12.009