DOI QR코드

DOI QR Code

FINSLER METRICS WITH REVERSIBLE GEODESICS

  • Xia, Qiaoling (Department of Mathematics, School of Sciences Hangzhou Dianzi University)
  • Received : 2018.11.13
  • Accepted : 2019.10.16
  • Published : 2020.11.30

Abstract

In this paper, we give an equivalent characterization for general (α, β)-metrics with reversible geodesics when the dimension of the manifold is greater than 2.

Keywords

Acknowledgement

This author is supported by Zhejiang Provincial NSFC (No. LY19A010021) and NNSFC (No.11671352).

References

  1. D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1268-3
  2. R. L. Bryant, Projectively flat Finsler 2-spheres of constant curvature, Selecta Math. (N.S.) 3 (1997), no. 2, 161-203. https://doi.org/10.1007/s000290050009
  3. R. L. Bryant, Geodesically reversible Finsler 2-spheres of constant curvature, in Inspired by S. S. Chern, 95-111, Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006. https://doi.org/10.1142/9789812772688_0004
  4. S.-S. Chern and Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. https://doi.org/10.1142/5263
  5. M. Crampin, Randers spaces with reversible geodesics, Publ. Math. Debrecen 67 (2005), no. 3-4, 401-409.
  6. Y. Feng and Q. Xia, On a class of locally projectively flat Finsler metrics (II), Differential Geom. Appl. 62 (2019), 39-59. https://doi.org/10.1016/j.difgeo.2018.09.004
  7. I. M. Masca, V. S. Sabau, and H. Shimada, Reversible geodesics for (α, β)-metrics, Internat. J. Math. 21 (2010), no. 8, 1071-1094. https://doi.org/10.1142/S0129167X10006355
  8. I. M. Masca, V. S. Sabau, and H. Shimada, Two dimensional (α, β)-metrics with reversible geodesics, Publ. Math. Debrecen 82 (2013), no. 2, 485-501. https://doi.org/10.5486/PMD.2013.5494
  9. X. Mo and H. Zhu, On a class of locally projectively flat general (α, β)-metrics, Bull. Korean Math. Soc. 54 (2017), no. 4, 1293-1307. https://doi.org/10.4134/BKMS.b160551
  10. Q. Xia, On a class of projectively flat Finsler metrics, Differential Geom. Appl. 44 (2016), 1-16. https://doi.org/10.1016/j.difgeo.2015.10.002
  11. Q. Xia, On a class of Finsler metrics of scalar flag curvature, Results Math. 71 (2017), no. 1-2, 483-507. https://doi.org/10.1007/s00025-016-0539-6
  12. C. Yu and H. Zhu, On a new class of Finsler metrics, Differential Geom. Appl. 29 (2011), no. 2, 244-254. https://doi.org/10.1016/j.difgeo.2010.12.009