DOI QR코드

DOI QR Code

Preparation of Co3O4/NF Anode for Lithium-ion Batteries

  • Tian, Shiyi (School of Science, Harbin University of Science and Technology) ;
  • Li, Botao (School of software and microelectronics, Harbin University of Science and Technology) ;
  • Zhang, Bochao (School of software and microelectronics, Harbin University of Science and Technology) ;
  • Wang, Yang (School of Science, Harbin University of Science and Technology) ;
  • Yang, Xu (School of software and microelectronics, Harbin University of Science and Technology) ;
  • Ye, Han (School of software and microelectronics, Harbin University of Science and Technology) ;
  • Xia, Zhijie (School of software and microelectronics, Harbin University of Science and Technology) ;
  • Zheng, Guoxu (School of software and microelectronics, Harbin University of Science and Technology)
  • Received : 2020.06.11
  • Accepted : 2020.07.06
  • Published : 2020.11.30

Abstract

Due to its characteristics of light weight, high energy density, good safety, long service life, no memory effect, and environmental friendliness, lithium-ion batteries (LIBs) are widely used in various portable electronic products. The capacity and performance of LIBs largely depend on the performance of electrode materials. Therefore, the development of better positive and negative materials is the focus of current research. The application of metal organic framework materials (MOFs) derivatives in energy storage has attracted much attention and research. Using MOFs as precursors, porous metal oxides and porous carbon materials with controllable structure can be obtained. In this paper, rod-shaped Co-MOF-74 was grown on Ni Foam (NF) by hydrothermal method, and then Co-MOF-74/NF precursor was heat-treated to obtain rodshaped Co3O4/NF. Ni Foam was skeleton structured, which effectively relieved. The change of internal stress changes and destroys the structural volume of the electrode material and reduces the capacity attenuation. Co3O4/NF composite material has a specific discharge capacity of up to 1858 mA h/g for the first time, and a reversible capacity of up to 902.4 mA h/g at a current density of 200 mA/g, and has excellent rate and impedance performance. The synthesis strategy reported in this article opens the way to design high-performance electrodes for energy storage and electrochemical catalysis.

Keywords

References

  1. K. Kang, Y.S. Meng, J. Breger, Science, 2006, 311(5763), 977-980. https://doi.org/10.1126/science.1122152
  2. J.Y. Luo, H.M. Xiong, Y.Y. Xia, J. Phys. Chem. C, 2008, 112(31), 12051-12057. https://doi.org/10.1021/jp800915f
  3. T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater., 2010, 9(2), 146-151. https://doi.org/10.1038/nmat2612
  4. X. Deng, H. Tueysuez, ACS Catal., 2014, 4, 3701-3714. https://doi.org/10.1021/cs500713d
  5. X. Zhu, C. Tang, H.F. Wang, Q. Zhang, C. Yang, F. Wei, J. Mater. Chem. A, 2015, 3(48), 24540-24546. https://doi.org/10.1039/C5TA08019C
  6. S. Tian, G. Zheng, Q. Liu, M. Ren, J. Yin, Int. J. Electrochem. Sci., 2019, 14, 9459-9467.
  7. X.H. Xia, J.P. Tu, Y.Q. Zhang, X.L. Wang, C.D. Gu, X.B. Zhao, H.J. Fan, ACS Nano, 2012, 6(6), 5531-5538. https://doi.org/10.1021/nn301454q
  8. X. Xiao, X. Liu, H. Zhao, Adv. Mater., 2012, 24(42), 5762-5766. https://doi.org/10.1002/adma.201202271
  9. J.R. Miller, P. Simon, Science, 2008, 321(5889), 651-652. https://doi.org/10.1126/science.1158736
  10. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev., 2012, 41(2), 797-828. https://doi.org/10.1039/C1CS15060J
  11. L. Peng, Y. Ouyang, W. Li, Electrochim. Acta, 2016, 190, 126-133. https://doi.org/10.1016/j.electacta.2015.12.204
  12. N. Yan, L. Hu, Y. Li, J. Phys. Chem. C, 2012, 116(12), 7227-7235. https://doi.org/10.1021/jp2126009
  13. K. Feng, H.W. Park, X. Wang, Electrochim. Acta, 2014, 139, 145-151. https://doi.org/10.1016/j.electacta.2014.07.005
  14. K.J. Lee, T.H. Kim, T.K. Kim, J. Mater. Chem. A, 2014, 2(35), 14393-14400. https://doi.org/10.1039/c4ta02501f
  15. F. Du, D. Yu, L. Dai, Chem. Mater., 2011, 23(21), 4810-4816. https://doi.org/10.1021/cm2021214
  16. J. Xu, Q. Wang, X. Wang, ACS Nano, 2013, 7(6), 5453-5462. https://doi.org/10.1021/nn401450s
  17. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev., 2009, 38(9), 2520-2531. https://doi.org/10.1039/b813846j
  18. K. Cheng, F. Yang, G. Wang, J. Mater. Chem. A, 2013, 1(5), 1669-1676. https://doi.org/10.1039/C2TA00219A
  19. H. Zhang, Y. Chen, W. Wang, J. Mater. Chem. A, 2013, 1(30), 8593-8600. https://doi.org/10.1039/c3ta11152k
  20. H. Lee, Y.J. Dong, J.L. Dong, J. Mater. Chem. A, 2014, 2(30), 11891-11898. https://doi.org/10.1039/C4TA01311E
  21. K. Qiu, H. Yan, D. Zhang, Electrochim. Acta, 2014, 141, 248-254. https://doi.org/10.1016/j.electacta.2014.07.074
  22. K. Qiu, Y. Lu, J. Cheng, Electrochim. Acta, 2015, 157, 62-68. https://doi.org/10.1016/j.electacta.2014.12.035
  23. J. Zheng, B. Zhang, Ceram. Int., 2014, 40(7), 11377-11380. https://doi.org/10.1016/j.ceramint.2014.02.108
  24. G. Zhou, L. Li, Q. Zhang, Phys. Chem. Chem. Phys., 2013, 15(15), 5582-5587. https://doi.org/10.1039/c3cp50221j
  25. P. Zhang, Z.P. Guo, Y. Huang, J. Power Sources, 2011, 196(16), 6987-6991. https://doi.org/10.1016/j.jpowsour.2010.10.090
  26. W. Mei, J. Huang, L. Zhu, J. Mater. Chem., 2012, 22(18), 9315-9321. https://doi.org/10.1039/c2jm00123c
  27. X. Wang, L. Yu, X.L. Wu, J. Phys. Chem. C, 2009, 113(35), 15553-15558. https://doi.org/10.1021/jp904652m
  28. Y. Fan, H. Shao, J. Wang, Chem. Commun., 2011, 47(12), 3469-3471. https://doi.org/10.1039/c0cc05383j
  29. Y. Lou, J. Liang, Y. Peng, Phys. Chem. Chem. Phys., 2015, 17(14), 8885-8893. https://doi.org/10.1039/c4cp06077f
  30. J. Zhu, L. Bai, Y. Sun, Nanoscale, 2013, 5(12), 5241-5246. https://doi.org/10.1039/c3nr01178j
  31. N. Yan, L. Hu, Y. Li, J. Phys. Chem. C, 2012, 116(12), 7227-7235. https://doi.org/10.1021/jp2126009
  32. G. Zhou, D.W. Wang, F. Li, Chem. Mater., 2010, 22(18), 5306-5313. https://doi.org/10.1021/cm101532x
  33. J.S. Do, C.H. Weng, J. Power Sources, 2005, 146(1-2), 482-486. https://doi.org/10.1016/j.jpowsour.2005.03.095
  34. J. Chen, X.H. Xia, J.P. Tu, J. Mater. Chem., 2012, 22(30), 15056-15061. https://doi.org/10.1039/c2jm31629c
  35. C.C. Li, Q.H. Li, L.B. Chen, J. Mater. Chem., 2011, 21(32), 11867-11872. https://doi.org/10.1039/c1jm11328c
  36. D. Kong, J. Luo, Y. Wang, Adv. Funct. Mater., 2014, 24(24), 3815-3826. https://doi.org/10.1002/adfm.201304206
  37. X. Huang, X. Li, H. Wang, Electrochim. Acta, 2010, 55(24), 7362-7366. https://doi.org/10.1016/j.electacta.2010.07.036
  38. F. Zheng, D. Zhu, Q. Chen, ACS Appl. Mater. Inter., 2014, 6(12), 9256-9264. https://doi.org/10.1021/am501512j

Cited by

  1. Cellulose Nanofiber Composite with Bimetallic Zeolite Imidazole Framework for Electrochemical Supercapacitors vol.11, pp.2, 2020, https://doi.org/10.3390/nano11020395