DOI QR코드

DOI QR Code

Velocity-based decision of water quality measurement locations for the identification of water quality problems in water supply systems

상수도시스템 수질사고 인지를 위한 유속기반 수질계측기 위치 결정

  • Hong, Sungjin (Department of Civil Engineering, The University of Suwon) ;
  • Lee, Chanwook (Department of Civil Engineering, The University of Suwon) ;
  • Park, Jiseung (Department of Civil Engineering, The University of Suwon) ;
  • Yoo, Do Guen (Department of Civil Engineering, The University of Suwon)
  • 홍성진 (수원대학교 토목공학과) ;
  • 이찬욱 (수원대학교 토목공학과) ;
  • 박지승 (수원대학교 토목공학과) ;
  • 유도근 (수원대학교 건설환경에너지공학부)
  • Received : 2020.09.29
  • Accepted : 2020.10.05
  • Published : 2020.11.30

Abstract

Recently, water pollution accidents have continued to occur in pipelines such as red water Incheon and Seoul. In order to recognize this water quality problem, it is necessary to install a water quality sensor in an appropriate location and measure it in advance to detect or block the water supply to the water faucet of the shelter. However, there are limitations, such as maintenance costs, to installing multiple water meters in all pipelines. Therefore, this study proposed a methodology for determining and prioritizing the installation location of flow-based water quality sensor for the recognition of water quality problems in pipelines. We applied the proposed procedure to the pipe break scenario. The results of the determination of the location of the water quality sensor were presented by applying it to the pipe network that actually operates the emergency pipe in Korea. The result of the decision showed that in the event of abnormal situation caused by the destruction of individual pipes, the flow rate of the pipes around the aqueduct and the tank may change rapidly, resulting in water quality accidents caused by turbidity. In the future, it is expected that the water quality monitoring point selection method, such as establishing an external pipe operation plan for pipe cleaning, will utilize the procedure for determining the location of the water quality sensor according to the velocity.

최근 인천, 서울 적수 사고와 같은 관로 내 수질오염 사고가 지속적으로 발생되고 있다. 이러한 수질문제를 인지하기 위해서는 적절한 위치에 수질계측기를 설치하고 미리 계측하여 수용가의 수도꼭지까지 물 공급이 되기 이전에 발견 혹은 차단할 필요가 있다. 그러나 모든 관로에 수질계측기를 다수 설치하는 것에는 유지비용증대와 같은 한계점이 존재한다. 따라서 본 연구에서는 관로 내 수질문제 인지를 위한 유속기반의 수질계측기 설치위치를 결정하고 우선순위를 선정하는 방법론을 제안하였다. 제안된 절차를 관 파괴 시나리오와 국내에서 실제 운영 중인 비상연계관로가 포함된 관망운영 시나리오에 적용해 수질계측기 위치를 결정하고 결과를 분석하였다. 결정 결과 개별적인 관로의 파괴와 비상연계에 의한 비정상상황 발생시 대수용가와 탱크 주변, 그리고 비상연계관로 인근에 위치한 관로의 유속이 급격히 변하여 탁수발생에 의한 수질사고가 나타날 수 있을것으로 나타났다. 제안된 유속기반의 수질계측기 위치 결정 절차는 향후 관 청소를 위한 차단 및 비상관로 운영 계획 수립 등 수질모니터링 지점 선정 기법으로 활용 가능할 것으로 기대된다.

Keywords

References

  1. Alzamora, F.M., and Ayala, H.B. (2006). "Optimal sensor location for detecting contamination events in water distribution systems using topological algorithms." Proceeding 8th Annual Water Distribution System Analysis Symposium, Cincinnati, OH, US.
  2. Aral, M.M., Guan, J., and Maslia, M.L. (2010). "Optimal design of sensor placement in water distribution networks." Journal of Water Resources Planning and Management, Vol. 136, No. 1, pp. 5-18. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000001
  3. Deuerlein, J., Simpson, A.R., and Korth, A. (2014). "Flushing planner: a tool for planning and optimization of unidirectional flushing." Procedia Engineering, Vol. 70, pp. 497-506. https://doi.org/10.1016/j.proeng.2014.02.055
  4. Kessler, A., Ostfeld, A., and Sinai, G. (1998). "Detecting accidental contaminations in municipal water networks." Journal of Water Resources Planning and Management, Vol. 124, No. 4, No. 192-198. https://doi.org/10.1061/(ASCE)0733-9496(1998)124:4(192)
  5. Kirmeyer, G.J. (2000). Guidance manual for maintaining distribution system water quality. American ater Works ssociation, NY, US.
  6. Krause, A., Leskovec, J., Isovitsch, S., Xu, J., Guestrin, C., VanBriesen, J., Small, M., and Fischbeck, P. (2008). "Optimizing sensor placements in water distribution systems using submodular function maximization." Water Distribution Systems Analysis Symposium, University of Cincinnati, Cincinnati, OH, US.
  7. Lee, C.W., Lee, Y.J., Park, J.S., and Yoo, D.G. (2020). "Determination of the sensor placement for detection water quality problems in water supply systems." Journal of the Korean Society of Hazard Mitigation, Vol. 20, No. 1, pp. 299-306. https://doi.org/10.9798/KOSHAM.2020.20.1.299
  8. Ministry of Environment (ME) (2019). South Korea, accessed 27 October 1999, .
  9. Ministry of Environment (ME) (2017). "Statistics of waterworks." pp. 310-316.
  10. Oberoi, H. (1994). The construction of religious boundaries: Culture, identity, and diversity in the Sikh tradition. University of Chicago Press, Chicago, US.
  11. Ostfeld, A., and Salomons, E. (2004). "Optimal layout of early warning detection stations for water distribution systems security." Journal of Water Resources Planning and Management, Vol. 130, No. 5, pp. 377-385. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:5(377)
  12. Tryby, M.E., Propato, M., and Ranjithan, S.R. (2010). "Monitoring design for source identification in water distribution systems." Journal of Water Resources Planning and Management, Vol. 136, No. 6, pp. 637-646. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000080
  13. Watson, J.P., Murray, R., and Hart, W.E. (2009). "Formulation and optimization of robust sensor placement problems for drinking water contamination warning systems." Journal of Infrastructure Systems, Vol. 15, No. 4, pp. 330-339. https://doi.org/10.1061/(ASCE)1076-0342(2009)15:4(330)
  14. Xanthopulos, Z., Melachrinoudis, E., and Solomon, M.M. (2000). "Interactive multiobjective group decision making with interval parameters." Management Science, Vol. 46, No. 12, pp. 1585-1601. https://doi.org/10.1287/mnsc.46.12.1585.12071
  15. Xu, J., Fischbeck, P.S., Small, M.J., VanBriesen, J.M., and Casman, E. (2008). "Identifying sets of key nodes for placing sensors in dynamic water distribution networks." Journal of Water Resources Planning and Management, Vol. 134, No. 4, pp. 378-385. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:4(378)
  16. Xu, J., Johnson, M.P., Fischbeck, P.S., Small, M.J., and VanBriesen, J.M. (2010). "Robust placement of sensors in dynamic water distribution systems." European Journal of Operational Research, Vol. 202, No. 3, pp. 707-716. https://doi.org/10.1016/j.ejor.2009.06.010