DOI QR코드

DOI QR Code

감초 신품종 및 약전 수재감초의 면역조절 효과 비교 연구

The Comparative Study of Immunomodulatory Effect by Glycyrrhiza New Varieties and Official Compendia

  • 강윤미 (상지대학교 한의과대학 약리학교실) ;
  • 김원남 (세명대학교 한의과대학 본초방제학교실) ;
  • 진종식 (전북대학교 환경생명자원대학 한약자원학과) ;
  • 이종현 (동덕여자대학교 약학대학 약학과) ;
  • 장재기 (농촌진흥청 국립원예특작과학원 약용작물과) ;
  • 이정훈 (농촌진흥청 국립원예특작과학원 약용작물과) ;
  • 안효진 (상지대학교 한의과대학 약리학교실)
  • Kang, Yun-Mi (Department of Pharmacology, College of Korean Medicine, Sangji University) ;
  • Kim, Wonnam (Division of Pharmacology, College of Korean Medicine, Semyung University) ;
  • Jin, Jong-Sik (Department of Oriental Medicine Resources, Jeonbuk National University) ;
  • Lee, Jong-Hyun (Department of Pharmacy, College of Pharmacy, Dongduk Women's University) ;
  • Chang, Jae Ki (Herbal Crop Research Division, NIHHS, RDA) ;
  • Lee, Jeonghoon (Herbal Crop Research Division, NIHHS, RDA) ;
  • An, Hyo-Jin (Department of Pharmacology, College of Korean Medicine, Sangji University)
  • 투고 : 2020.10.08
  • 심사 : 2020.11.25
  • 발행 : 2020.11.30

초록

Objective : The genus Glycyrrhiza has been used in food and traditional herbal medicine. Glycyrrhiza new varieties Wongam and Sinwongam have been developed by Korea Rural Development Administration and investigated to register on Korean Pharmacopoeia of the Ministry of Food and Drug Safety. The aim of this study is to investigate the immunomodulatory effect of Wongam and Sinwongam comparing with listed Glycyrrhiza species (Glycyrrhiza uralensis Fischer and G. glabra Linne) for evaluations about pharmacological effect of Glycyrrhiza new varieties. Methods : We studied the immunomodulatory effect of Wongam and Sinwongam compared with G. uralensis and G. glabra using THP-1 cell in vitro model. The cells were treated with phorbol 12-myristate 13-acetate (PMA) for differentiation and stimulated with lipopolysaccharides (LPS) to induce immune activation. We analyzed and compared the effects Glycyrrhiza new varieties and listed Glycyrrhiza species using nitric oxide (NO) assay, western blot, and reverse transcription-quantitative polymerase chain reaction analysis. 1) Results : Wongam and Sinwongam showed no cytotoxicity in THP-1 cells. Wongam and Sinwongam, and listed Glycyrrhiza species increased NO production, and cyclooxygenase (COX)-2 expression with or without LPS in differentiated THP-1 macrophages. Furthermore, Wongam and Sinwongam and listed Glycyrrhiza species upregulated the mRNA expressions of T helper type 1 (Th 1)-associated cytokines in LPS-stimulated THP-1 macrophages. Conclusion : These results indicated that Wongam and Sinwongam would have effect of enhancing immune response through the increase of NO and COX-2 expression, and activate Th1-associated cytokines. The findings of this study suggest the wide applicability of Glycyrrhiza new varieties.

키워드

참고문헌

  1. Calder, P.C. and S. Kew, The immune system: a target for functional foods? Br J Nutr. 2002;88 Suppl 2:S165-77. https://doi.org/10.1079/BJN2002682
  2. Juan-Manuel Anaya, Yehuda Shoenfeld, Adriana Rojas-Villarraga, Roger A. Levy, Ricard Cervera, editors. Autoimmunity: From Bench to Bedside, First edition. Bogota (Colombia): El Rosario University Press; 2013. Available from:URL:https://pubmed.ncbi.nlm.nih.gov/29087650.
  3. Locati, M., A. Mantovani, and A. Sica, Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol. 2013;120:163-84. https://doi.org/10.1016/B978-0-12-417028-5.00006-5
  4. Elhelu, M.A., The role of macrophages in immunology. J Natl Med Assoc. 1983;75:314-7.
  5. Arango Duque, G. and A. Descoteaux, Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.
  6. Pereira, A.C.A., R.J. Silva, P.S. Franco, A. de Oliveira Gomes, G. Souza, I.C.B. Milian, M. Ribeiro, A.M. Rosini, P.M. Guirelli, E.L.P. Ramos, T.W.P. Mineo, J.R. Mineo, N.M. Silva, E.A.V. Ferro, and B.F. Barbosa, Cyclooxygenase (COX)-2 Inhibitors Reduce Toxoplasma gondii Infection and Upregulate the Pro-inflammatory Immune Response in Calomys callosus Rodents and Human Monocyte Cell Line. Front Microbiol. 2019;10:225. https://doi.org/10.3389/fmicb.2019.00225
  7. Leopold Wager, C.M. and F.L. Wormley, Jr., Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunol. 2014;7:1023-35. https://doi.org/10.1038/mi.2014.65
  8. Fiore, C., M. Eisenhut, E. Ragazzi, G. Zanchin, and D. Armanini, A history of the therapeutic use of liquorice in Europe. J Ethnopharmacol. 2005;99:317-24. https://doi.org/10.1016/j.jep.2005.04.015
  9. Sedighinia, F., A. Safipour Afshar, S. Soleimanpour, R. Zarif, J. Asili, and K. Ghazvini, Antibacterial activity of Glycyrrhiza glabra against oral pathogens: an in vitro study. Avicenna J Phytomed. 2012;2: 118-24.
  10. Fiore, C., M. Eisenhut, R. Krausse, E. Ragazzi, D. Pellati, D. Armanini, and J. Bielenberg, Antiviral effects of Glycyrrhiza species. Phytother Res. 2008;22:141-8. https://doi.org/10.1002/ptr.2295
  11. Furuhashi, I., S. Iwata, S. Shibata, T. Sato, and H. Inoue, Inhibition by licochalcone A, a novel flavonoid isolated from liquorice root, of IL-1beta-induced PGE2 production in human skin fibroblasts. J Pharm Pharmacol. 2005;57:1661-6. https://doi.org/10.1211/jpp.57.12.0017
  12. Aly, A.M., L. Al-Alousi, and H.A. Salem, Licorice: a possible anti-inflammatory and anti-ulcer drug. AAPS PharmSciTech. 2005;6:E74-82. https://doi.org/10.1208/pt060113
  13. Dong, S., A. Inoue, Y. Zhu, M. Tanji, and R. Kiyama, Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of Glycyrrhiza glabra root. Food Chem Toxicol. 2007;45:2470-8. https://doi.org/10.1016/j.fct.2007.05.031
  14. Lateef, M., L. Iqbal, N. Fatima, K. Siddiqui, N. Afza, M. Zia-ul-Haq, and M. Ahmad, Evaluation of antioxidant and urease inhibition activities of roots of Glycyrrhiza glabra. Pak J Pharm Sci. 2012;25:99-102.
  15. Wang, W., X. Hu, Z. Zhao, P. Liu, Y. Hu, J. Zhou, D. Zhou, Z. Wang, D. Guo, and H. Guo, Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32:1179-84. https://doi.org/10.1016/j.pnpbp.2007.12.021
  16. Pastorino, G., L. Cornara, S. Soares, F. Rodrigues, and M. Oliveira, Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res. 2018;32:2323-2339. https://doi.org/10.1002/ptr.6178
  17. Kwon, Y.J., D.H. Son, T.H. Chung, and Y.J. Lee, A Review of the Pharmacological Efficacy and Safety of Licorice Root from Corroborative Clinical Trial Findings. J Med Food. 2020;23:12-20. https://doi.org/10.1089/jmf.2019.4459
  18. Dziewulska, D., T. Stenzel, M. Smialek, B. Tykalowski, and A. Koncicki, The impact of Aloe vera and licorice extracts on selected mechanisms of humoral and cell-mediated immunity in pigeons experimentally infected with PPMV-1. BMC Vet Res. 2018;14:148. https://doi.org/10.1186/s12917-018-1467-3
  19. Guo, A., D. He, H.B. Xu, C.A. Geng, and J. Zhao, Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents. Sci Rep. 2015;5:14046. https://doi.org/10.1038/srep14046
  20. Ayeka, P.A., Y. Bian, P.G. Mwitari, X. Chu, Y. Zhang, R. Uzayisenga, and E.O. Otachi, Immunomodulatory and anticancer potential of Gan cao (Glycyrrhiza uralensis Fisch.) polysaccharides by CT-26 colon carcinoma cell growth inhibition and cytokine IL-7 upregulation in vitro. BMC Complement Altern Med. 2016;16:206. https://doi.org/10.1186/s12906-016-1171-4
  21. Lee, J.Y., J.H. Lee, J.H. Park, S.Y. Kim, J.Y. Choi, S.H. Lee, Y.S. Kim, S.S. Kang, E.C. Jang, and Y. Han, Liquiritigenin, a licorice flavonoid, helps mice resist disseminated candidiasis due to Candida albicans by Th1 immune response, whereas liquiritin, its glycoside form, does not. Int Immunopharmacol. 2009;9:632-8. https://doi.org/10.1016/j.intimp.2009.02.007
  22. Y.M. Kang, W.K., J.S. Jin, J.H. Lee, J.K. Chang, J. Lee, H.J. An, The Comparative Study of Antiallergic Effect by Glycyrrhiza New Varieties and Official Compendia. Kor. J. Herbol. 2020;35:13-21. https://doi.org/10.6116/KJH.2020.35.5.13.
  23. Brubaker, J.O., C.M. Thompson, L.A. Morrison, D.M. Knipe, G.R. Siber, and R.W. Finberg, Th1-associated immune responses to beta-galactosidase expressed by a replication-defective herpes simplex virus. J Immunol. 1996;157:1598-604.
  24. Huang, F.P., W. Niedbala, X.Q. Wei, D. Xu, G.J. Feng, J.H. Robinson, C. Lam, and F.Y. Liew, Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages. Eur J Immunol. 1998;28:4062-70. https://doi.org/10.1002/(SICI)1521-4141(199812)28:12<4062::AID-IMMU4062>3.0.CO;2-K
  25. Jacobs, F., D. Chaussabel, C. Truyens, V. Leclerq, Y. Carlier, M. Goldman, and B. Vray, IL-10 upregulates nitric oxide (NO) synthesis by lipopolysaccharide (LPS)-activated macrophages: improved control of Trypanosoma cruzi infection. Clin Exp Immunol. 1998;113:59-64. https://doi.org/10.1046/j.1365-2249.1998.00637.x
  26. Hosseinzadeh, H. and M. Nassiri-Asl, Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother Res. 2015;29:1868-86. https://doi.org/10.1002/ptr.5487
  27. Bordbar, N., M.H. Karimi, and Z. Amirghofran, The effect of glycyrrhizin on maturation and T cell stimulating activity of dendritic cells. Cell Immunol. 2012;280:44-9. https://doi.org/10.1016/j.cellimm.2012.11.013
  28. Peng, L.N., L. Li, Y.F. Qiu, J.H. Miao, X.Q. Gao, Y. Zhou, Z.X. Shi, Y.L. Xu, D.H. Shao, J.C. Wei, and Z.Y. Ma, Glycyrrhetinic acid extracted from Glycyrrhiza uralensis Fisch. induces the expression of Toll-like receptor 4 in Ana-1 murine macrophages. J Asian Nat Prod Res. 2011;13:942-50. https://doi.org/10.1080/10286020.2011.603305
  29. Kang, Y.J., B.A. Wingerd, T. Arakawa, and W.L. Smith, Cyclooxygenase-2 gene transcription in a macrophage model of inflammation. J Immunol. 2006;177:8111-22. https://doi.org/10.4049/jimmunol.177.11.8111
  30. Britt, R.D., Jr., M.L. Locy, T.E. Tipple, L.D. Nelin, and L.K. Rogers, Lipopolysaccharide-induced cyclooxygenase-2 expression in mouse transformed Clara cells. Cell Physiol Biochem. 2012;29:213-22. https://doi.org/10.1159/000337602
  31. Gandhi, J., L. Khera, N. Gaur, C. Paul, and R. Kaul, Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis. Front Microbiol. 2017;8:538.
  32. Kim, A.J., Y.O. Kim, J.S. Shim, and J.K. Hwang, Immunostimulating activity of crude polysaccharide extract isolated from Curcuma xanthorrhiza Roxb. Biosci Biotechnol Biochem. 2007;71:1428-38. https://doi.org/10.1271/bbb.60241
  33. Leung, S., X. Liu, L. Fang, X. Chen, T. Guo, and J. Zhang, The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cell Mol Immunol. 2010;7: 182-9. https://doi.org/10.1038/cmi.2010.22
  34. Holley, M.M. and T. Kielian, Th1 and Th17 cells regulate innate immune responses and bacterial clearance during central nervous system infection. J Immunol. 2012;188:1360-70. https://doi.org/10.4049/jimmunol.1101660
  35. Steen, E.H., X. Wang, S. Balaji, M.J. Butte, P.L. Bollyky, and S.G. Keswani, The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv Wound Care (New Rochelle). 2020;9:184-198. https://doi.org/10.1089/wound.2019.1032