Acknowledgement
The authors gratefully acknowledge financial support from Universitas Indonesia, Depok 16424, Indonesia, through the Publikasi Terindeks Internasional (PUTI) Q1 Program, Grant no. NKB-1410/UN2.RST/HKP.05.00/2020.
References
- Auricchio, F., Beirao da Veiga, L., Hughes, T.J.R., Reali, A. and Sangalli, G. (2010), "Isogeometric collocation methods", Math. Models Methods Appl. Sci., 20(11), 2075-2107. https://doi.org/10.1142/S0218202510004878.
- Bathe, K.J. and Dvorkin, E.N. (1985), "A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation", Int. J. Num. Meth. Eng., 21, 367-383. https://doi.org/10.1002/nme.1620210213.
- Batoz, J.L. and Katili I. (1992), "On A Simple Triangular Reissner/Mindlin Plate Element Based on Incompatible Modes and Discrete constraints", Int. J. Num. Meth. Eng., 35, 1603-1632. https://doi.org/10.1002/nme.1620350805.
- Bazilevs, Y. and Hughes, T.J.R. (2008), "NURBS-based isogeometric analysis for the computation of flows about rotating components", Comput. Mech., 43, 143-150. https://doi.org/10.1007/s00466-008-0277-z.
- de Boor, C. (2001), A Practical Guide to Splines, Springer, Germany.
- Echter, R. and Bischoff, M. (2010), "Numerical efficiency, locking and unlocking of nurbs finite elements", Comput. Meth. Applied Mech. Eng., 199, 374-382. https://doi.org/10.1016/j.cma.2009.02.035
- Endo, M. and Kimura, N. (2007), "An alternative formulation of the boundary value problem for the Timoshenko beam and Mindlin plate", J. Sound Vib., 301, 355-373. https://doi.org/10.1016/j.jsv.2006.10.005.
- Falsone, G. and Settineri, D. (2011), "An Euler-Bernoulli-like finite element method for Timoshenko beams", Mech. Res. Communications, 38, 12-16. https://doi.org/10.1016/j.mechrescom.2010.10.009.
- Hughes, T.J.R, Cotrell, J.A. and Bazilevs, Y. (2005), "Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement", Comput. Meth. Applied Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
- Hughes, T.J.R. and Taylor, R.L and Kanoknukulchai, W. (1977), "A simple and efficient finite element for plate bending", Int. J. Num. Meth. Eng., 11, 1529-1543. https://doi.org/10.1002/nme.1620111005.
- Hughes, T.J.R. and Tezduyar, T.E. (1981), "Finite element based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element", J. Applied Mech., 48, 587-596. https://doi.org/10.1115/1.3157679
- Katili A.M., Maknun I.J. and Katili I. (2019), "Theoretical equivalence and numerical performance of T3γs and MITC3 plate finite elements", Struct. Eng. Mech., 69, 527-536. https://doi.org/10.12989/sem.2019.69.5.527.
- Katili I., Imam Jauhari Maknun I.J., Batoz J.L. and Katili A.M. (2018), "Asymptotic equivalence of DKMT and MITC3 elements for thick composite plates", Compos. Struct., 206, 363-379. https://doi.org/10.1016/j.compstruct.2018.08.017.
- Katili I., Maknun I.J., Batoz J.L. and Ibrahimbegovic A. (2018), "Shear deformable shell element DKMQ24 for composite structures", Compos. Struct., 202, 182-200. https://doi.org/10.1016/j.compstruct.2018.01.043.
- Katili I., Maknun I.J., Millet O. and Hamdouni A. (2015), "Application of DKMQ element for composite plate bending structures", Compos. Struct., 132, 166-174. http://doi.org/10.1016/j.compstruct.2015.04.051.
- Katili, I, Batoz, J.L., Maknun, I.J., Hamdouni, A. and Millet, O. (2015), "The Development of DKMQ Plate Bending Element for Thick to Thin Shell Analysis Based on Naghdi/Reissner/Mindlin Shell Theory", Finite Elements in Analysis and Design, 100, 12-27. http://doi.org/10.1016/j.finel.2015.02.005.
- Katili, I. (1993a), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields- part I: An extended DKT element for thick-plate bending analysis", Int. J. Num. Meth. Eng., 36,1859-1883. https://doi.org/10.1002/nme.1620361106.
- Katili, I. (1993b), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields- part II: An extended DKQ element for thick plate bending analysis", Int. J. Num. Meth. Eng., 36,1885-1908. https://doi.org/10.1002/nme.1620361107
- Katili, I. (2017), "Unified and integrated approach in a new Timoshenko beam element", European J. Comput. Mech., 26: 282-308. http://doi.org/10.1080/17797179.2017.1328643.
- Katili, I. and Aristio, R. (2018), "Isogeometric Galerkin in rectangular plate bending problem based on UI approach", European J. Mech. A/Solids, 67, 92-107. http://doi.org/10.1016/j.euromechsol.2017.08.013.
- Katili, I., Batoz, J.L., Maknun, I.J. and Lardeur, P. (2018), "A comparative formulation of DKMQ, DSQ and MITC4 quadrilateral plate elements with new numerical results based on s-norm tests", Comput. Struct, 204, 48-64. https://doi.org/10.1016/j.compstruc.2018.04.001.
- Katili, I., Maknun, I.J., Batoz, J.L. and Katili, A.M, (2019), "A comparative formulation of T3γs, DST, DKMT and MITC3+ triangular plate elements with new numerical results based on s-norm tests", European J. Mech., A/Solids, 78, https://doi.org/103826/j.euromechsol.
- Kiendl J., Bletzinger K.-U., Linhard J. and Wuchner R. (2009), "Isogeometric shell analysis with kirchhoff-love elements", Comput. Meth. Applied Mech. Eng., 198, 3902-3914. https://doi.org/10.1016/j.cma.2009.08.013.
- Kiendl, J. and Auricchio, F. (2015), "Isogeometric Collocation Methods for the Reissner-Mindlin Plate Problem", Comput. Meth. Appl. Mech. Eng, 284, 489-507. https://doi.org/10.1016/j.cma.2014.09.011.
- Kiendl, J., Auricchio, F., Hughes, T.J.R. and Reali, A. (2015), "Single-variable formulations and isogeometric discretization for shear deformable beams", Computer Methods Appl. Mech. Eng., 284, 988-1004. https://doi.org/10.1016/j.cma.2014.11.011.
- Kirchhoff, G. (1850), "Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", Journal fur die reine und angewandte Mathematik, 40, 51-58. http://eudml.org/doc/147439.
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behavior of functionally graded Timoshenko and Bernoulli-Euler beam", J. Sound Vib., 318, 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
- Love, A.E.H. (1888), "On the small free vibrations and deformations of elastic shells", Philosophical Trans. Royal Soc. (London) A, 179, 491-549. https://doi.org/10.1098/rsta.1888.0016
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear of flexural motions of isotropic elastic plates", J. Applied Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
- Nguyen-Thanh, N., Valizadeh, N., Nguyen, M.N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L. and Rabczuk, T. (2015), "An extended isogeometric thin shell analysis based on Kirchhoff-Love theory", Comput. Meth. Appl. Mech. Eng., 284(1), 265-291. https://doi.org/10.1016/j.cma.2014.08.025.
- Reali A., Gomez H. (2015), "An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates", Comput. Meth. Applied Mech. Eng, 284, 623-636. https://doi.org/10.1016/j.cma.2014.10.027.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Applied Mech., 12, A69-A77. https://doi.org/10.1115/1.4009435
- Senjanovic, I., Vladimir, N. and Tomic, M. (2013), "An advanced theory of moderately thick plate vibrations", J. Sound Vib., 332, 1868-1880. https://doi.org/10.1016/j.jsv.2012.11.022.
- Shimpi, R.P. and Patel, H.G. (2006), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296, 979-999. https://doi.org/10.1016/j.jsv.2006.03.030.
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Ngo, T. (2017), "A new simple shear deformation plate theory", Compos. Struct., 171, 277-285. https://doi.org/10.1016/j.compstruct.2017.03.027.
Cited by
- An improved incompatible DST element using free formulation approach vol.79, pp.1, 2021, https://doi.org/10.12989/sem.2021.79.1.067