DOI QR코드

DOI QR Code

Isogeometric Collocation Method to solve the strong form equation of UI-RM Plate Theory

  • Received : 2020.01.04
  • Accepted : 2020.06.26
  • Published : 2020.11.25

Abstract

This work presents the formulation of the isogeometric collocation method to solve the strong form equation of a unified and integrated approach of Reissner Mindlin plate theory (UI-RM). In this plate theory model, the total displacement is expressed in terms of bending and shear displacements. Rotations, curvatures, and shear strains are represented as the first, the second, and the third derivatives of the bending displacement, respectively. The proposed formulation is free from shear locking in the Kirchhoff limit and is equally applicable to thin and thick plates. The displacement field is approximated using the B-splines functions, and the strong form equation of the fourth-order is solved using the collocation approach. The convergence properties and accuracy are demonstrated with square plate problems of thin and thick plates with different boundary conditions. Two approaches are used for convergence tests, e.g., increasing the polynomial degree (NELT = 1×1 with p = 4, 5, 6, 7) and increasing the number of element (NELT = 1×1, 2×2, 3×3, 4×4 with p = 4) with the number of control variable (NCV) is used as a comparable equivalent variable. Compared with DKMQ element of a 64×64 mesh as the reference for all L/h, the problem analysis with isogeometric collocation on UI-RM plate theory exhibits satisfying results.

Keywords

Acknowledgement

The authors gratefully acknowledge financial support from Universitas Indonesia, Depok 16424, Indonesia, through the Publikasi Terindeks Internasional (PUTI) Q1 Program, Grant no. NKB-1410/UN2.RST/HKP.05.00/2020.

References

  1. Auricchio, F., Beirao da Veiga, L., Hughes, T.J.R., Reali, A. and Sangalli, G. (2010), "Isogeometric collocation methods", Math. Models Methods Appl. Sci., 20(11), 2075-2107. https://doi.org/10.1142/S0218202510004878.
  2. Bathe, K.J. and Dvorkin, E.N. (1985), "A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation", Int. J. Num. Meth. Eng., 21, 367-383. https://doi.org/10.1002/nme.1620210213.
  3. Batoz, J.L. and Katili I. (1992), "On A Simple Triangular Reissner/Mindlin Plate Element Based on Incompatible Modes and Discrete constraints", Int. J. Num. Meth. Eng., 35, 1603-1632. https://doi.org/10.1002/nme.1620350805.
  4. Bazilevs, Y. and Hughes, T.J.R. (2008), "NURBS-based isogeometric analysis for the computation of flows about rotating components", Comput. Mech., 43, 143-150. https://doi.org/10.1007/s00466-008-0277-z.
  5. de Boor, C. (2001), A Practical Guide to Splines, Springer, Germany.
  6. Echter, R. and Bischoff, M. (2010), "Numerical efficiency, locking and unlocking of nurbs finite elements", Comput. Meth. Applied Mech. Eng., 199, 374-382. https://doi.org/10.1016/j.cma.2009.02.035
  7. Endo, M. and Kimura, N. (2007), "An alternative formulation of the boundary value problem for the Timoshenko beam and Mindlin plate", J. Sound Vib., 301, 355-373. https://doi.org/10.1016/j.jsv.2006.10.005.
  8. Falsone, G. and Settineri, D. (2011), "An Euler-Bernoulli-like finite element method for Timoshenko beams", Mech. Res. Communications, 38, 12-16. https://doi.org/10.1016/j.mechrescom.2010.10.009.
  9. Hughes, T.J.R, Cotrell, J.A. and Bazilevs, Y. (2005), "Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement", Comput. Meth. Applied Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
  10. Hughes, T.J.R. and Taylor, R.L and Kanoknukulchai, W. (1977), "A simple and efficient finite element for plate bending", Int. J. Num. Meth. Eng., 11, 1529-1543. https://doi.org/10.1002/nme.1620111005.
  11. Hughes, T.J.R. and Tezduyar, T.E. (1981), "Finite element based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element", J. Applied Mech., 48, 587-596. https://doi.org/10.1115/1.3157679
  12. Katili A.M., Maknun I.J. and Katili I. (2019), "Theoretical equivalence and numerical performance of T3γs and MITC3 plate finite elements", Struct. Eng. Mech., 69, 527-536. https://doi.org/10.12989/sem.2019.69.5.527.
  13. Katili I., Imam Jauhari Maknun I.J., Batoz J.L. and Katili A.M. (2018), "Asymptotic equivalence of DKMT and MITC3 elements for thick composite plates", Compos. Struct., 206, 363-379. https://doi.org/10.1016/j.compstruct.2018.08.017.
  14. Katili I., Maknun I.J., Batoz J.L. and Ibrahimbegovic A. (2018), "Shear deformable shell element DKMQ24 for composite structures", Compos. Struct., 202, 182-200. https://doi.org/10.1016/j.compstruct.2018.01.043.
  15. Katili I., Maknun I.J., Millet O. and Hamdouni A. (2015), "Application of DKMQ element for composite plate bending structures", Compos. Struct., 132, 166-174. http://doi.org/10.1016/j.compstruct.2015.04.051.
  16. Katili, I, Batoz, J.L., Maknun, I.J., Hamdouni, A. and Millet, O. (2015), "The Development of DKMQ Plate Bending Element for Thick to Thin Shell Analysis Based on Naghdi/Reissner/Mindlin Shell Theory", Finite Elements in Analysis and Design, 100, 12-27. http://doi.org/10.1016/j.finel.2015.02.005.
  17. Katili, I. (1993a), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields- part I: An extended DKT element for thick-plate bending analysis", Int. J. Num. Meth. Eng., 36,1859-1883. https://doi.org/10.1002/nme.1620361106.
  18. Katili, I. (1993b), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields- part II: An extended DKQ element for thick plate bending analysis", Int. J. Num. Meth. Eng., 36,1885-1908. https://doi.org/10.1002/nme.1620361107
  19. Katili, I. (2017), "Unified and integrated approach in a new Timoshenko beam element", European J. Comput. Mech., 26: 282-308. http://doi.org/10.1080/17797179.2017.1328643.
  20. Katili, I. and Aristio, R. (2018), "Isogeometric Galerkin in rectangular plate bending problem based on UI approach", European J. Mech. A/Solids, 67, 92-107. http://doi.org/10.1016/j.euromechsol.2017.08.013.
  21. Katili, I., Batoz, J.L., Maknun, I.J. and Lardeur, P. (2018), "A comparative formulation of DKMQ, DSQ and MITC4 quadrilateral plate elements with new numerical results based on s-norm tests", Comput. Struct, 204, 48-64. https://doi.org/10.1016/j.compstruc.2018.04.001.
  22. Katili, I., Maknun, I.J., Batoz, J.L. and Katili, A.M, (2019), "A comparative formulation of T3γs, DST, DKMT and MITC3+ triangular plate elements with new numerical results based on s-norm tests", European J. Mech., A/Solids, 78, https://doi.org/103826/j.euromechsol.
  23. Kiendl J., Bletzinger K.-U., Linhard J. and Wuchner R. (2009), "Isogeometric shell analysis with kirchhoff-love elements", Comput. Meth. Applied Mech. Eng., 198, 3902-3914. https://doi.org/10.1016/j.cma.2009.08.013.
  24. Kiendl, J. and Auricchio, F. (2015), "Isogeometric Collocation Methods for the Reissner-Mindlin Plate Problem", Comput. Meth. Appl. Mech. Eng, 284, 489-507. https://doi.org/10.1016/j.cma.2014.09.011.
  25. Kiendl, J., Auricchio, F., Hughes, T.J.R. and Reali, A. (2015), "Single-variable formulations and isogeometric discretization for shear deformable beams", Computer Methods Appl. Mech. Eng., 284, 988-1004. https://doi.org/10.1016/j.cma.2014.11.011.
  26. Kirchhoff, G. (1850), "Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", Journal fur die reine und angewandte Mathematik, 40, 51-58. http://eudml.org/doc/147439.
  27. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behavior of functionally graded Timoshenko and Bernoulli-Euler beam", J. Sound Vib., 318, 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
  28. Love, A.E.H. (1888), "On the small free vibrations and deformations of elastic shells", Philosophical Trans. Royal Soc. (London) A, 179, 491-549. https://doi.org/10.1098/rsta.1888.0016
  29. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear of flexural motions of isotropic elastic plates", J. Applied Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
  30. Nguyen-Thanh, N., Valizadeh, N., Nguyen, M.N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L. and Rabczuk, T. (2015), "An extended isogeometric thin shell analysis based on Kirchhoff-Love theory", Comput. Meth. Appl. Mech. Eng., 284(1), 265-291. https://doi.org/10.1016/j.cma.2014.08.025.
  31. Reali A., Gomez H. (2015), "An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates", Comput. Meth. Applied Mech. Eng, 284, 623-636. https://doi.org/10.1016/j.cma.2014.10.027.
  32. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Applied Mech., 12, A69-A77. https://doi.org/10.1115/1.4009435
  33. Senjanovic, I., Vladimir, N. and Tomic, M. (2013), "An advanced theory of moderately thick plate vibrations", J. Sound Vib., 332, 1868-1880. https://doi.org/10.1016/j.jsv.2012.11.022.
  34. Shimpi, R.P. and Patel, H.G. (2006), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296, 979-999. https://doi.org/10.1016/j.jsv.2006.03.030.
  35. Thai, H.T., Nguyen, T.K., Vo, T.P. and Ngo, T. (2017), "A new simple shear deformation plate theory", Compos. Struct., 171, 277-285. https://doi.org/10.1016/j.compstruct.2017.03.027.

Cited by

  1. An improved incompatible DST element using free formulation approach vol.79, pp.1, 2021, https://doi.org/10.12989/sem.2021.79.1.067