References
- Al-Najar H (2011). The integration of FAO-CropWat model and GIS techniques for estimating irrigation water requirement and its application in the Gaza strip, Natural Resources, 2, 146-154. https://doi.org/10.4236/nr.2011.23020
- Armstrong M and Jabin R (1981). Variogram models must be positive-definite, Journal of the International Association of Mathematical Geology, 13, 5-459.
- Barry RP and Pace RK (1997). Kriging with large data sets using sparse matrix techniques, Communications in Statistics - Simulation and Computation, 26, 619-629. https://doi.org/10.1080/03610919708813401
- Berman M and Diggle P (1989). Estimating weighted integrals of the second-Order Intensity of a spatial point process, Journal of the Royal Statistical Society: Series B, 51, 81-92.
- Chiles JP and Delfiner P (1999). Geostatistics: Modelling Spatial Uncertainty, John Wiley & Sons, Wiley-Interscience.
- Cressie N (1985). Fitting variogram models by weighted least squares, Mathematical Geology, 17, 563-586. https://doi.org/10.1007/BF01032109
- Cressie N (1993). Statistics for Spatial Data, John Wiley & Sons, New York.
- Cressie N and Hawkins DM (1980). Robust estimation of the variogram, Journal of the International Association of Mathematical Geology, 12, 115-125. https://doi.org/10.1007/BF01035243
- Croux C and Rousseeuw PJ (1992). Time-efficient algorithms for two highly robust estimators of scale, Computational Statistics, 1, 411-428. https://doi.org/10.1007/978-3-662-26811-7_58
- Diggle PJ (1985). A kernel method for smoothing point process data, Applied Statistics, 34, 138-147. https://doi.org/10.2307/2347366
- Diggle PJ, Gates DJ, and Stibbard A (1987). A nonparametric estimator for pairwise-interaction point processes, Biometrika, 74, 763-770. https://doi.org/10.1093/biomet/74.4.763
- Dunn MR (1983). A simple sufficient condition for a variogram model to yield positive varianees under restrictions, Mathematical Geology, 15, 553-564. https://doi.org/10.1007/BF01031177
- European Union (December 2006). Directive 2006/118/EC of the European parliament and of the council on the protection of groundwater against pollution and deterioration, Official Journal of the European Union, L 372, 19-31.
- Fernandez-Casal R (2016). npsp: Nonparametric Spatial (Geo)statistics, R package version 0.5-3.
- Garcia-Soidan PH, Febrero-Bande M, and Gonzalez-Manteiga W (2004). Nonparametric kernel estimation of an isotropic variogram, Journal of Statistical Planning and Inference, 121, 65-92. https://doi.org/10.1016/S0378-3758(02)00507-4
- Garcia-Soidan PH, Gonzalez-Manteiga W, and Febrero-Bande M (2003). Local linear regression estimation of the variogram, Statistics and Probability Letters, 64, 169-179. https://doi.org/10.1016/S0167-7152(03)00149-4
- Garcia-Soidan PH and Menezes R (2012). Estimation of the spatial distribution through the kernel indicator variogram, Environmetrics, 23, 535-548. https://doi.org/10.1002/env.2151
- Genton MG (1998). Highly robust variogram estimation, Mathematical Geology, 30, 213-221. https://doi.org/10.1023/A:1021728614555
- Gorsich DJ and Genton MG (2000). Variogram model selection via nonparametric derivative estimation, International Association for Mathematical Geology, 32, 249-270. https://doi.org/10.1023/A:1007563809463
- Graler B, Pebesma E, and Heuvelink G (2016). Spatio-Temporal Interpolation using gstat, The R Journal, 8, 204-218. https://doi.org/10.32614/RJ-2016-014
- Hall P, Fisher NI, and Hoffmann B (1994). On the nonparametric estimation of covariance functions, The Annals of Statistics, 22, 2115-2134. https://doi.org/10.1214/aos/1176325774
- Hastie T, Tibshirani R, and Friedman J (2009). The Elements of Statistical Learning, Springer, New York.
- Huang C, Hsing T, and Cressie N (2011). Nonparametric estimation of the variogram and its spectrum, Biometrika, 98, 775-789. https://doi.org/10.1093/biomet/asr056
- Isaaks EH and Srivastava RM (1989). An Introduction to Applied Geostatistics, Oxford University Press, New York.
- Jammalamadaka SR and Sengupta A (2001). Topics in Circular Statistics, World Scientific, Singapore.
- Jin R and Kelly GE (2017). A comparison of sampling grids, cut-off distance and type of residuals in parametric variogram estimation, Communications in Statistics - Simulation and Computation, 46, 1781-1795. https://doi.org/10.1080/03610918.2015.1011785
- Lahiri SN, Kaiser MS, Cressie N, and Hsu NJ (1999). Prediction of spatial cumulative distribution functions using subsampling, Journal of the American Statistical Association, 94, 86-97. https://doi.org/10.1080/01621459.1999.10473821
- Matern B (1960; reprinted 1986). Spatial Variation (2nd ed), Springer-Verlag, Berlin.
- Matheron G (1962). Trait'e de g'eostatistique appliqu'ee, tome i, memoires du Bureau de recherches geologiques et minieres, Editions Technip, 14, Paris.
- Matheron G (1963a). Trait'e de g'eostatistique appliqu'ee, tome ii, le krigeage. memoires du bureau de recherches geologiques et minieres, Editions Bureau de Recherches Geologiques et Minieres, 24, Paris.
- Matheron G (1963b). Principles of geostatistics, Economic Geology, 58, 1246-1266. https://doi.org/10.2113/gsecongeo.58.8.1246
- Menezes R, Garcia-Soidan PH, and Febrero-Bande M (2005). A comparison of approaches for valid variogram achievement, Computational Statistics, 20, 623-642. https://doi.org/10.1007/BF02741319
- Menezes R, Garcia-Soidan PH, and Febrero-Bande M (2008). A Kernel variogram estimator for clustered data, Scandinavian Journal of Statistics, 35, 18-37. https://doi.org/10.1111/j.1467-9469.2007.00566.x
- Moran PAP (1950). Notes on continuous stochastic phenomena, Biometrika, 37, 17-23. https://doi.org/10.1093/biomet/37.1-2.17
- Nolan BT, Ruddy BC, Hitt KJ, and Helsel DR (1998). A national look at nitrate contamination of ground water, Water Conditioning and Purification, 39, 76-79.
- Palestinian Central Bureau of Statistics (2014). Palestinian Central Bureau of Statistics reports. Available from: http://www.pcbs.gov.ps/default.aspx
- Pebesma EJ and Bivand RS (2005). Classes and methods for spatial data in R, R News, 5, 9-13.
- Ribeiro Jr PJ and Diggle PJ (2001). geoR: a package for geostatistical analysis, R-NEWS, 1, 15-18.
- Rousseeuw PJ and Croux C (1993). Alternatives to the median absolute deviation, Journal of the American Statistical Association, 88, 1273-1283. https://doi.org/10.1080/01621459.1993.10476408
- Shapiro A and Botha JD (1991). Variogram fitting with a general class of conditionally nonnegative definite functions, Computational Statistics and Data Analysis, 11, 11-96.
- Shomer B, Muller G, and Yahya A (2004). Potential use of treated wastewater and sludge in agricultural sector of the Gaza strip, Clean Technologies and Environmental Policy, 6, 128-137. https://doi.org/10.1007/s10098-003-0228-5
- Spalding RF and Exner ME (1993). Occurrence of nitrate in groundwater - a review, Journal of Environmental Quality, 22, 392-402. https://doi.org/10.2134/jeq1993.00472425002200030002x
- Stein ML (1999). Interpolation of Spatial Data - Some Theory for Kriging, Springer Verlag, New York.
- United Nations (August 2012). Gaza in 2020: a liveable place?, United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA), 1-24.
- United States Environmental Protection Agency (1995). Drinking water regulations and health advisories, Office of Water, Washington.
- Waller LA and Crawford CAG (2004). Applied Spatial Statistics for Public Health Data, John Wiley & Sons, Hoboken, NJ.
- Yaglom A (1987). Correlation Theory of Stationary and Related Random Functions, Springer Verlag, New York.
- Yu K, Mateu J, and Porcu E (2007). A kernel-based method for nonparametric estimation of variograms, Statistica Neerlandica, 61, 173-197. https://doi.org/10.1111/j.1467-9574.2007.00326.x