Acknowledgement
This work was supported by a 2-Year Research Grant of Pusan National University.
References
- Alexander D and Lange K (2011). Stability selection for genome-wide association, Genetic Epidemiology, 35, 722-728. https://doi.org/10.1002/gepi.20623
- Bhattacharjee S, Rajaraman P, Jacobs KB, et al. (2012). A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits, American Journal of Human Genetics, 90, 821-835. https://doi.org/10.1016/j.ajhg.2012.03.015
- Broadaway KA, Cutler DJ, Duncan R, et al. (2016). A statistical approach for testing cross-phenotype effects of rare variants, American Journal of Human Genetics, 98, 525-540. https://doi.org/10.1016/j.ajhg.2016.01.017
- Choi J, Kim K, and Sun H (2018). New variable selection strategy for analysis of high-dimensional DNA methylation data, Journal of Bioinformatics and Computational Biology, 16, 1850010. https://doi.org/10.1142/S0219720018500105
- Foulkes AS (2009). Applied Statistical Genetics with R, Springer-Verlag, New York.
- Kim K and Sun H (2019). Incorporating genetic networks into case-control association studies with high-dimensional DNA methylation data, BMC Bioinformatics, 20, 510. https://doi.org/10.1186/s12859-019-3040-x
- Li Y, Nan B, and Zhu J (2015). Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure, Biometrics, 71, 354-363. https://doi.org/10.1111/biom.12292
- Lin Z and Lin X (2018). Multiple phenotype association tests using summary statistics in genome-wide association studies, Biometrics, 74, 165-175. https://doi.org/10.1111/biom.12735
- Lipka AE, Tian F, Wang Q, et al. (2012). GAPIT: genome association and prediction integrated tool, Bioinformatics, 28, 2397-2399. https://doi.org/10.1093/bioinformatics/bts444
- Meinshausen N and Buhlmann P (2010). Stability selection, Journal of the Royal Statistical Society Series B, 72, 417-473. https://doi.org/10.1111/j.1467-9868.2010.00740.x
- Schaid DJ, Tong X, Larrabee B, Kennedy RB, Poland GA, and Sinnwell JP (2016). Statistical methods for testing genetic pleiotropy, Genetics, 204, 483-497. https://doi.org/10.1534/genetics.116.189308
- Simon N, Friedman J, and Hastie T (2013a). A blockwise descent algorithm for group-penalized multiresponse and multinomial regression, arXiv preprint arXiv:1311.6529.
- Simon N, Friedman J, Hastie T, and Tibshirani R (2013b). A sparse-group lasso, Journal of Computational and Graphical Statistics, 22, 231-245. https://doi.org/10.1080/10618600.2012.681250
- Solovieff N, Cotsapas C, Lee PH, Purcell SM, and Smoller JW (2013). Pleiotropy in complex traits: challenges and strategies, Nature Reviews Genetics, 14, 483-495. https://doi.org/10.1038/nrg3461
- Sun H and Wang S (2012). Penalized logistic regression for high-dimensional DNA methylation data analysis with case-control studies, Bioinformatics, 28, 1368-1375. https://doi.org/10.1093/bioinformatics/bts145
- Sun H and Wang S (2013). Network-based regularization for matched case-control analysis of high-dimensional DNA methylation data, Statistics in Medicine, 32, 2127-2139. https://doi.org/10.1002/sim.5694
- Sun H, Wang Y, Chen Y, Li Y, and Wang S (2017). pETM: a penalized Exponential Tilt Model for analysis of correlated high-dimensional DNA methylation data, Bioinformatics, 33, 1765-1772. https://doi.org/10.1093/bioinformatics/btx064
- van der Sluis S, Posthuma D, and Dolan CV (2013). TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies, PLoS Genetics, 9, e1003235. https://doi.org/10.1371/journal.pgen.1003235
- Wu B and Pankow JS (2016). Sequence kernel association test of multiple continuous phenotypes, Genetic Epidemiology, 40, 91-100. https://doi.org/10.1002/gepi.21945
- Wu T, Chen Y, Hastie T, Sobel E, and Lange K (2009). Genome-wide association analysis by lasso penalized logistic regression, Bioinformatics, 25, 714-721. https://doi.org/10.1093/bioinformatics/btp041
- Yuan M and Lin Y (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society Series B, 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Zou H and Hastie T (2005). Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society Series B, 67, 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
- Zhou H, Sehl M, Sinsheimer J, and Lange K (2010). Association screening of common and rare genetic variants by penalized regression, Bioinformatics, 26, 2375-2382. https://doi.org/10.1093/bioinformatics/btq448