참고문헌
- Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133-164.
- Song B, Zeng G, Gong J, et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int. 2017;105:43-55. https://doi.org/10.1016/j.envint.2017.05.001
- Lasko K, Vadrevu KP, Nguyen T. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets. PLoS One. 2018;13(5):e0196629 https://doi.org/10.1371/journal.pone.0196629
- Nguyen TTH, Zhang W, Li Z, et al. Assessment of heavy metal pollution in Red River surface sediments, Vietnam. Mar Pollut Bull. 2016;113(1-2):513-519. https://doi.org/10.1016/j.marpolbul.2016.08.030
- Beyersmann D, Hartwig A. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol. 2008;82(8):493-512. https://doi.org/10.1007/s00204-008-0313-y
- Wysocki R, Fortier PK, Maciaszczyk E, et al. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP1-like proteins Yap1p and Yap8p. Mol Biol Cell. 2004;15(5):2049-2060. https://doi.org/10.1091/mbc.E03-04-0236
- Hosiner D, Gerber S, Lichtenberg FH, et al. Impact of acute metal stress in Saccharomyces cerevisiae. PLoS One. 2014;9(1):e83330. https://doi.org/10.1371/journal.pone.0083330
- Adamo GM, Brocca S, Passolunghi S, et al. Laboratory evolution of copper tolerant yeast strains. Microb Cell Fact. 2012;11:1-11. https://doi.org/10.1186/1475-2859-11-1
- Bankar A, Zinjarde S, Shinde M, et al. Heavy metal tolerance in marine strains of Yarrowia lipolytica. Extremophiles. 2018;22(4):617-628. https://doi.org/10.1007/s00792-018-1022-y
- Fawzy EM, Abdel MFF, Elzayat SA. Biosorption of heavy metals onto different eco-friendly substrates. J Toxicol Environ Health Sci. 2017;9(5):35-44.
- Grujic S, Vasic S, Radojevic I, et al. Comparison of the Rhodotorula mucilaginosa biofilm and planktonic culture on heavy metal susceptibility and removal potential. Water Air Soil Pollut. 2017;228(2):73-18. https://doi.org/10.1007/s11270-017-3259-y
- Acosta RI, Cardenas GJF, Rodriguez PAS, et al. Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Bioinorg Chem Appl. 2018;2018:1-7. https://doi.org/10.1155/2018/3457196
- Yang J, Wang Q, Luo Q, et al. Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochem Eng J. 2009;46(3):294-299. https://doi.org/10.1016/j.bej.2009.05.022
- Sampaio JP, WeiB M, Gadanho M, et al. New taxa in the Tremellales: Bulleribasidium oberjochense gen. et sp. nov., Papiliotrema bandonii gen. et sp. nov. and Fibulobasidium murrhardtense sp. nov. Mycologia. 2002;94(5):873-887. https://doi.org/10.2307/3761703
- Into P, Pontes A, Jacques N, et al. Papiliotrema plantarum sp. nov., a novel tremellaceous sexual yeast species. Int J Syst Evol Microbiol. 2018;68(6):1937-1941. https://doi.org/10.1099/ijsem.0.002771
- Khunnamwong P, Surussawadee J, Srisuk N, et al. Papiliotrema phichitensis f.a., sp. nov., a novel yeast species isolated from sugarcane leaf in Thailand. Antonie van Leeuwenhoek. 2018;111(12):2455-2461. https://doi.org/10.1007/s10482-018-1134-5
- Machado PD, Brandao LR, Santos AR, et al. Papiliotrema leoncinii sp. nov. and Papiliotrema miconiae sp. nov., two tremellaceous yeast species from Brazil. Int J Syst Evol Microbiol. 2016;66(4):1799-1806. https://doi.org/10.1099/ijsem.0.000945
- Surussawadee J, Khunnamwong P, Srisuk N, et al. Papiliotrema siamense f.a., sp. nov., a yeast species isolated from plant leaves. Int J Syst Evol Microbiol. 2014;64(Pt 9):3058-3062. https://doi.org/10.1099/ijs.0.065607-0
- Kurtzman CP, Fell JW, Boekhout T, et al. Methods for isolation, phenotypic characterization and maintenance of yeasts. Vol. 1. Amsterdam: Elsevier; 2011. p. 87-110.
- Sherman F. Getting started with yeast. Methods Enzymol. 2002;350:3-41. https://doi.org/10.1016/S0076-6879(02)50954-X
- Looke M, Kristjuhan K, Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques. 2011;50(5):325-328. https://doi.org/10.2144/000113672
- Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek. 1998;73(4):331-371. https://doi.org/10.1023/A:1001761008817
- Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876-4882. https://doi.org/10.1093/nar/25.24.4876
- Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA. 1981;78(1):454-458. https://doi.org/10.1073/pnas.78.1.454
- Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
- Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-791. https://doi.org/10.2307/2408678
- Liu XZ, Wang QM, Goker M, et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol. 2015;81:85-147. https://doi.org/10.1016/j.simyco.2015.12.001
- Kurtzman C, Fell JW, Boekhout T. The yeasts: a taxonomic study. Amsterdam: Elsevier; 2011.
- Singh P, Raghukumar C, Parvatkar RR, et al. Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin. Yeast. 2013;30(3):93-101. https://doi.org/10.1002/yea.2943
- Balsalobre L, De Siloniz MI, Valderrama MJ, et al. Occurrence of yeasts in municipal wastes and their behaviour in presence of cadmium, copper and zinc. J Basic Microbiol. 2003;43(3):185-193. https://doi.org/10.1002/jobm.200390021
- Vadkertiova R, Slavikova E. Metal tolerance of yeasts isolated from water, soil and plant environments. J Basic Microbiol. 2006;46(2):145-152. https://doi.org/10.1002/jobm.200510609
- Bankar AV, Kumar AR, Zinjarde SS. Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol. 2009;84(5):847-865. https://doi.org/10.1007/s00253-009-2156-8
- Dar N, Shakoori A. Chromium tolerant yeast strains isolated from industrial effluents and their possible use in environmental clean-up. Bull Environ Contam Toxicol. 1999;63(6):744-750. https://doi.org/10.1007/s001289901042
- Liu B, Wang C, Liu D, et al. Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa. PLoS One. 2017;12(3):e0172984 https://doi.org/10.1371/journal.pone.0172984
- Wang H, McCarthney A, Qiu X, et al. Cd2+ impact on metabolic cells of Saccharomyces cerevisiae over an extended period and implications for bioremediation. Geomicrobiol J. 2012;29(3):199-205. https://doi.org/10.1080/01490451.2011.558558
- Abbas SH, Ismail IM, Mostafa TM, et al. Biosorption of heavy metals: a review. J Chem Sci Technol. 2014;3(4):74-102.
피인용 문헌
- Removal of Manganese and Copper from Aqueous Solution by Yeast Papiliotrema huenov vol.49, pp.5, 2020, https://doi.org/10.1080/12298093.2021.1968624