References
- Kong W-S, Lee S, Yoon K, et al. Environmental characteristics of wind-hole and phytogeographical values. J Environ Impact Assess. 2011;20(3):381-395. https://doi.org/10.14249/EIA.2011.20.3.381
- Oh SH, Lee Y-M, Kong W-S. Air hole in Korea. Pochen (Korea): Geobook, KNA; 2013.
- Morard S, Delaloye R, Lambiel C. Pluriannual thermal behavior of low elevation cold talus slopes in western Switzerland. Geogr Helv. 2010;65(2):124-134. https://doi.org/10.5194/gh-65-124-2010
- Zacharda M, Gude M, Kraus S, et al. The relict mite Rhagidia gelida (Acari, Rhagidiidae) as a biological cryoindicator of periglacial microclimate in European highland screes. Arct Antarct Alp Res. 2005;37(3):402-408. https://doi.org/10.1657/1523-0430(2005)037[0402:TRMRGA]2.0.CO;2
- Henry C. Refuge for an ice age survivor. Endanger Species Bull. 2003;28:24-26.
- Iokawa Y, Ishizawa S. Vascular plants of windhole areas in Japan. J Phytogeogr Taxon. 2003;51:13-26.
- Lendemer JC, Edenborn HM, Harris RC. Contributions to the lichen flora of Pennsylvania: notes on the lichens of a remarkable talus slope in Huntingdon county. Opusc Philolichenum. 2009;6:125-136.
- Nekola JS. Paleorefugia and neorefugia: the influence of colonization history on community pattern and precess. Ecology. 1999;80(8):2459-2473 https://doi.org/10.1890/0012-9658(1999)080[2459:PANTIO]2.0.CO;2
- Saar R. Eishohlen ein meteorologisch-geophysikalisches Phanomen. Geogr Ann A. 1956;38(1):1-63. https://doi.org/10.2307/520404
- Swarzlow CR. Ice caves in northern California. J Geol. 1935;43:440-442. https://doi.org/10.1086/624321
- Vincent WB. Environmental influence of the glacieres of the Pryor Mountains, Montana. J Caves Karst Stud. 1974;36:13-21.
- Kim J-S, Chung J-M, Kim J-H, et al. Floristic study and conservation management strategies of algific talus slopes on the Korean peninsula. Korean J Pl Taxon. 2016;46(2):213-246. https://doi.org/10.11110/kjpt.2016.46.2.213
- Maki T. Characteristics of topograph, climate and vegetation around Jagaramogara wind cave basin. J Agric Meteorol. 1998;54(3):255-266. https://doi.org/10.2480/agrmet.54.255
- Sasaki H. Air and soil temperature affecting the distribution of plants on a wind-hole site. Ecol Rev. 1986;21:21-27.
- Sato K, Kudo G, Uemura S. Cool-spots site vegetation in IZARIIRI-HEIDE, northern Japan. Jpn J Ecol. 1993;43:91-98.
- Tanaka HL, Yokoi M, Nohara D. Observation study of summertime ice at the Nakayama windhole in Shimogo, Fukushima (Japan): UT; 2000.
- Thompson KM. Lichen diversity and conservation of northeast Iowa: White Pine Hollow State preserve and the lichen Lobaria pulmonaria. Ames, Iowa: ISU; 2018.
- Smith RI, Ovstedal DO. Solorina spongiosa in Antarctica: an extremely disjunct bipolar lichen. Lichenologist. 1994;26(2):209-213. https://doi.org/10.1006/lich.1994.1017
- Smith CW, Aptroot A, Coppins BJ, et al. The lichens of Great Britain and Ireland. 2nd ed. London (UK): BLS, NHM; 2009. p. 844-846.
- Martinez I, Burgaz AR. Revision of the genus Solorina (Lichenes) in Europe based on spore size variation. Ann Bot Fennici. 1998;35:137-142.
- Wiklund E, Wedin M. The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae. Cladistics. 2003;19(5):419-431. https://doi.org/10.1016/S0748-3007(03)00082-3
- Magain N, Miadlikowska J, Goffinet B, et al. Macroevolution of specificity in cyanolichens of the genus Peltigera section Polydactylon (Lecanoromycetes, Ascomycota). Syst Biol. 2016;66(1):74-99.
- Miadlikowska J, Kauff F, Hofstetter V, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia. 2006;98(6):1088-1103. https://doi.org/10.3852/mycologia.98.6.1088
- Schmull M, Miadlikowska J, Pelzer M, et al. Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia. 2011;103(5):983-1003. https://doi.org/10.3852/10-234
- Miadlikowska J, Lutzoni F. Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. Am J Bot. 2004;91(3):449-464. https://doi.org/10.3732/ajb.91.3.449
- Ohmura Y, Kashiwadani H. Checklist of lichens and allied fungi of Japan. Tokyo (Japan): NMNS; 2018. p. 110.
- Wetmore CM. Keys to the Lichens of China. UMN of Digital Conservancy; 2003. Available from: http://hdl.handle.net/11299/164294
- Yoshimura I. Lichen flora of Japan in color. Osaka (Japan): Hoikusha Publisher; 1974.
- Zoller S, Scheidegger C, Sperisen S. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist. 1999;31(5):511-516. https://doi.org/10.1006/lich.1999.0220
- Gargas A, Taylor JW. Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia. 1992;84(4):589-592. https://doi.org/10.2307/3760327
- Miadlikowska J, Lutzoni F. Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int J Plant Sci. 2000;161(6):925-958. https://doi.org/10.1086/317568
- White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
- Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol. 1999;16(12):1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
- Miadlikowska J, Kauff F, Hognabba F, et al. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol. 2014;79:132-168. https://doi.org/10.1016/j.ympev.2014.04.003
- Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
- Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754-755. https://doi.org/10.1093/bioinformatics/17.8.754
- Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572-1574. https://doi.org/10.1093/bioinformatics/btg180
- Zarrit R, Boumaza MS, Kerrour S, et al. L'Effet du Rapport de Forme sur la Convection Naturelle dans une Cavite Rectangulaire Inclinee Remplie d'Air. The 3rd International Seminar on New and Renewable Energies; Ghardaia - Algerie; 2014. p. 1-7.
- Wedin M, Tehler A, Gargas A. Phylogenetic relationships of Sphaerophoraceae (Ascomycetes) inferred from SSU rDNA sequences. Pl Syst Evol. 1998;209(1-2):75-83. https://doi.org/10.1007/BF00991525
- Wedin M, Wiklund E, Jorgensen PM, et al. Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Mol Phylogenet Evol. 2009;53(3):862-871. https://doi.org/10.1016/j.ympev.2009.08.013
- Rambaut A. FigTree: tree figure drawing tool, v.1.4.0. Institute of Evolutionary Biology, University of Edinburgh; 2012. Available from: http://tree.bio.ed.ac.uk/software/figtree/
- Kim MK, Han MS, Jang DH, et al. Production technique of observation grid data of 1km resolution. J Clim Res. 2012;7:55-68.
- Sinigla M, Lokos L, Molnar K, et al. Distribution of the legally protected lichen species Solorina saccata in Hungary. Studia Bot Hung. 2018;49(1):47-70. https://doi.org/10.17110/studbot.2018.49.1.47
- Ellis CJ, Coppins BJ, Dawson TP, et al. Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv. 2007;140(3-4):217-235. https://doi.org/10.1016/j.biocon.2007.08.016
- Ellis CJ, Geddes H, McCheyne N, et al. Lichen epiphyte response to non-analogue monthly climates: a critique of bioclimatic models. Perspect Plant Ecol. 2017;25:45-58. https://doi.org/10.1016/j.ppees.2017.01.005
- Thomson NF, Thomson JW. Spore ornamentation in the lichen genus Solorina. Bryologist. 1984;87(2):151-153. https://doi.org/10.2307/3243122
- Krog H, Swinscow T. Solorina simensis and S. saccata. Lichenologist. 1986;18(1):57-62. https://doi.org/10.1017/S0024282986000075
- Jahns HM, Klockner P, Ott S. Development of thalli and ascocarps in Solorina spongiosa (Sm.) Anzi and Solorina saccata (L.) Ach. Bibl Lichenol. 1995;57:241-251.
- Gartner G, Dablander A, Kofler W. Zur Taxonomie von Solorina bispora NYL. ssp. bispora (Ascolichenes) nach Sporenmerkmalen. Ber Naturwiss-med Ver Innsb. 2011;97:27-33.
- Martin L, Randlane T, Martin J. Lichens and their substrate preferences on the Pakri Peninsula (Northwest Estonia). Folia Cryptog Estonica. 2011;48:45-58.
- Ellis CJ. A risk-based model of climate change threat: hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany. 2013;91(1):1-11. https://doi.org/10.1139/cjb-2012-0171
Cited by
- Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversity vol.27, pp.8, 2020, https://doi.org/10.1111/gcb.15510