DOI QR코드

DOI QR Code

The First Finding of the Lichen Solorina saccata at an Algific Talus Slope in Korea

  • Received : 2020.02.23
  • Accepted : 2020.06.15
  • Published : 2020.08.31

Abstract

An algific talus slope is composed of broken rocks with vents connected to an ice cave, releasing cool air in summer and relatively warmer air in winter to maintain a more stable microclimate all year round. Such geological features create a very unusual and delicate ecosystem. Although there are around 25 major algific talus slopes in Korea, lichen ecology of these areas had not been investigated to date. In this study, we report the first exploration of lichen diversity and ecology at an algific talus slope, Jangyeol-ri, in Korea. A total of 37 specimens were collected over 2017-2018. Morphological and sequencing analysis revealed 27 species belonging to 18 genera present in the area. Of particular interest among these species was Solorina saccata, as it has previously not been reported in Korea and most members of genus Solorina are known to inhabit alpine regions of the Northern Hemisphere. We provide here a taxonomic key for S. saccata alongside molecular phylogenetic analyses and prediction of potential habitats in South Korea. Furthermore, regions in South Korea potentially suitable for Solorina spp. were predicted based on climatic features of known habitats around the globe. Our results showed that the suitable areas are mostly at high altitudes in mountainous areas where the annual temperature range does not exceed 26.6 ℃. Further survey of other environmental conditions determining the suitability of Solorina spp. should lead to a more precise prediction of suitable habitats and trace the origin of Solorina spp. in Korea.

Keywords

References

  1. Kong W-S, Lee S, Yoon K, et al. Environmental characteristics of wind-hole and phytogeographical values. J Environ Impact Assess. 2011;20(3):381-395. https://doi.org/10.14249/EIA.2011.20.3.381
  2. Oh SH, Lee Y-M, Kong W-S. Air hole in Korea. Pochen (Korea): Geobook, KNA; 2013.
  3. Morard S, Delaloye R, Lambiel C. Pluriannual thermal behavior of low elevation cold talus slopes in western Switzerland. Geogr Helv. 2010;65(2):124-134. https://doi.org/10.5194/gh-65-124-2010
  4. Zacharda M, Gude M, Kraus S, et al. The relict mite Rhagidia gelida (Acari, Rhagidiidae) as a biological cryoindicator of periglacial microclimate in European highland screes. Arct Antarct Alp Res. 2005;37(3):402-408. https://doi.org/10.1657/1523-0430(2005)037[0402:TRMRGA]2.0.CO;2
  5. Henry C. Refuge for an ice age survivor. Endanger Species Bull. 2003;28:24-26.
  6. Iokawa Y, Ishizawa S. Vascular plants of windhole areas in Japan. J Phytogeogr Taxon. 2003;51:13-26.
  7. Lendemer JC, Edenborn HM, Harris RC. Contributions to the lichen flora of Pennsylvania: notes on the lichens of a remarkable talus slope in Huntingdon county. Opusc Philolichenum. 2009;6:125-136.
  8. Nekola JS. Paleorefugia and neorefugia: the influence of colonization history on community pattern and precess. Ecology. 1999;80(8):2459-2473 https://doi.org/10.1890/0012-9658(1999)080[2459:PANTIO]2.0.CO;2
  9. Saar R. Eishohlen ein meteorologisch-geophysikalisches Phanomen. Geogr Ann A. 1956;38(1):1-63. https://doi.org/10.2307/520404
  10. Swarzlow CR. Ice caves in northern California. J Geol. 1935;43:440-442. https://doi.org/10.1086/624321
  11. Vincent WB. Environmental influence of the glacieres of the Pryor Mountains, Montana. J Caves Karst Stud. 1974;36:13-21.
  12. Kim J-S, Chung J-M, Kim J-H, et al. Floristic study and conservation management strategies of algific talus slopes on the Korean peninsula. Korean J Pl Taxon. 2016;46(2):213-246. https://doi.org/10.11110/kjpt.2016.46.2.213
  13. Maki T. Characteristics of topograph, climate and vegetation around Jagaramogara wind cave basin. J Agric Meteorol. 1998;54(3):255-266. https://doi.org/10.2480/agrmet.54.255
  14. Sasaki H. Air and soil temperature affecting the distribution of plants on a wind-hole site. Ecol Rev. 1986;21:21-27.
  15. Sato K, Kudo G, Uemura S. Cool-spots site vegetation in IZARIIRI-HEIDE, northern Japan. Jpn J Ecol. 1993;43:91-98.
  16. Tanaka HL, Yokoi M, Nohara D. Observation study of summertime ice at the Nakayama windhole in Shimogo, Fukushima (Japan): UT; 2000.
  17. Thompson KM. Lichen diversity and conservation of northeast Iowa: White Pine Hollow State preserve and the lichen Lobaria pulmonaria. Ames, Iowa: ISU; 2018.
  18. Smith RI, Ovstedal DO. Solorina spongiosa in Antarctica: an extremely disjunct bipolar lichen. Lichenologist. 1994;26(2):209-213. https://doi.org/10.1006/lich.1994.1017
  19. Smith CW, Aptroot A, Coppins BJ, et al. The lichens of Great Britain and Ireland. 2nd ed. London (UK): BLS, NHM; 2009. p. 844-846.
  20. Martinez I, Burgaz AR. Revision of the genus Solorina (Lichenes) in Europe based on spore size variation. Ann Bot Fennici. 1998;35:137-142.
  21. Wiklund E, Wedin M. The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae. Cladistics. 2003;19(5):419-431. https://doi.org/10.1016/S0748-3007(03)00082-3
  22. Magain N, Miadlikowska J, Goffinet B, et al. Macroevolution of specificity in cyanolichens of the genus Peltigera section Polydactylon (Lecanoromycetes, Ascomycota). Syst Biol. 2016;66(1):74-99.
  23. Miadlikowska J, Kauff F, Hofstetter V, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia. 2006;98(6):1088-1103. https://doi.org/10.3852/mycologia.98.6.1088
  24. Schmull M, Miadlikowska J, Pelzer M, et al. Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia. 2011;103(5):983-1003. https://doi.org/10.3852/10-234
  25. Miadlikowska J, Lutzoni F. Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. Am J Bot. 2004;91(3):449-464. https://doi.org/10.3732/ajb.91.3.449
  26. Ohmura Y, Kashiwadani H. Checklist of lichens and allied fungi of Japan. Tokyo (Japan): NMNS; 2018. p. 110.
  27. Wetmore CM. Keys to the Lichens of China. UMN of Digital Conservancy; 2003. Available from: http://hdl.handle.net/11299/164294
  28. Yoshimura I. Lichen flora of Japan in color. Osaka (Japan): Hoikusha Publisher; 1974.
  29. Zoller S, Scheidegger C, Sperisen S. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist. 1999;31(5):511-516. https://doi.org/10.1006/lich.1999.0220
  30. Gargas A, Taylor JW. Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia. 1992;84(4):589-592. https://doi.org/10.2307/3760327
  31. Miadlikowska J, Lutzoni F. Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int J Plant Sci. 2000;161(6):925-958. https://doi.org/10.1086/317568
  32. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
  33. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol. 1999;16(12):1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  34. Miadlikowska J, Kauff F, Hognabba F, et al. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol. 2014;79:132-168. https://doi.org/10.1016/j.ympev.2014.04.003
  35. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-4680. https://doi.org/10.1093/nar/22.22.4673
  36. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  37. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  38. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  39. Zarrit R, Boumaza MS, Kerrour S, et al. L'Effet du Rapport de Forme sur la Convection Naturelle dans une Cavite Rectangulaire Inclinee Remplie d'Air. The 3rd International Seminar on New and Renewable Energies; Ghardaia - Algerie; 2014. p. 1-7.
  40. Wedin M, Tehler A, Gargas A. Phylogenetic relationships of Sphaerophoraceae (Ascomycetes) inferred from SSU rDNA sequences. Pl Syst Evol. 1998;209(1-2):75-83. https://doi.org/10.1007/BF00991525
  41. Wedin M, Wiklund E, Jorgensen PM, et al. Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Mol Phylogenet Evol. 2009;53(3):862-871. https://doi.org/10.1016/j.ympev.2009.08.013
  42. Rambaut A. FigTree: tree figure drawing tool, v.1.4.0. Institute of Evolutionary Biology, University of Edinburgh; 2012. Available from: http://tree.bio.ed.ac.uk/software/figtree/
  43. Kim MK, Han MS, Jang DH, et al. Production technique of observation grid data of 1km resolution. J Clim Res. 2012;7:55-68.
  44. Sinigla M, Lokos L, Molnar K, et al. Distribution of the legally protected lichen species Solorina saccata in Hungary. Studia Bot Hung. 2018;49(1):47-70. https://doi.org/10.17110/studbot.2018.49.1.47
  45. Ellis CJ, Coppins BJ, Dawson TP, et al. Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv. 2007;140(3-4):217-235. https://doi.org/10.1016/j.biocon.2007.08.016
  46. Ellis CJ, Geddes H, McCheyne N, et al. Lichen epiphyte response to non-analogue monthly climates: a critique of bioclimatic models. Perspect Plant Ecol. 2017;25:45-58. https://doi.org/10.1016/j.ppees.2017.01.005
  47. Thomson NF, Thomson JW. Spore ornamentation in the lichen genus Solorina. Bryologist. 1984;87(2):151-153. https://doi.org/10.2307/3243122
  48. Krog H, Swinscow T. Solorina simensis and S. saccata. Lichenologist. 1986;18(1):57-62. https://doi.org/10.1017/S0024282986000075
  49. Jahns HM, Klockner P, Ott S. Development of thalli and ascocarps in Solorina spongiosa (Sm.) Anzi and Solorina saccata (L.) Ach. Bibl Lichenol. 1995;57:241-251.
  50. Gartner G, Dablander A, Kofler W. Zur Taxonomie von Solorina bispora NYL. ssp. bispora (Ascolichenes) nach Sporenmerkmalen. Ber Naturwiss-med Ver Innsb. 2011;97:27-33.
  51. Martin L, Randlane T, Martin J. Lichens and their substrate preferences on the Pakri Peninsula (Northwest Estonia). Folia Cryptog Estonica. 2011;48:45-58.
  52. Ellis CJ. A risk-based model of climate change threat: hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany. 2013;91(1):1-11. https://doi.org/10.1139/cjb-2012-0171

Cited by

  1. Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversity vol.27, pp.8, 2020, https://doi.org/10.1111/gcb.15510